

Simulation of Alignment and Tuning of ATF2 FF

Glen White / SLAC ATF2 Meeting, KEK December 18th 2006

Overview

- Porting simulation developed for ILC alignment and tuning, first look at simulation of ATF2 tuning performance.
- Assuming set of initial starting errors, take 100 seeds of Woodley-tuned v3.6 lattice (dispersion and coupling fixed in diagnostic section).
 - Add FF errors.
 - Apply BPM alignment, BBA and sextupole tuning knobs for each of 100 seeds using design measurement system resolutions.
- Here, simulation is static- next step is to add dynamic imperfection to tuning (Ground Motion, component + incoming beam jitter, magnet and BPM drifts etc.).
- □ Lucretia used for simulations.

Initial Error Parameters

- Initial errors taken from ILC assumptions.
- Assume movers on all FF quadrupoles and sextupoles.
- Shintake monitor assumed to have 100nm dynamic range.
- Also assume IP BPM with 5nm RMS resolution for initial tuning requirements.

Quad, Sext, Oct x/y transverse alignment	200 um
Quad, Sext, Oct x/y roll alignment	300 urad
Initial BPM-magnet field center alignment	30 um
dB/B for Quad, Sext, Octs	1e-4
Mover resolution (x & y)	50 nm
BPM resolutions	100 nm
Power supply resolution	14 - bit
Shintake Monitor Resolution	2nm

12/18/2006

Alignment and Tuning Procedure

- □ Switch off Sextupoles.
- $\Box \quad \text{Perform initial BBA using Quad movers} + \text{BPMs to get rough orbit} \rightarrow \text{IP.}$
- □ Quadrupole BPM alignment (quad-shunting).
- □ Perform Quadrupole BBA (DFS-like algorithm).
- □ Align Sextupole BPMs (move through beam + downstream BPM fits).
- □ Activate sextupole magnets.
- □ Rotate whole BDS about first quadrupole to pass beam through nominal IP position or iteratively move final quad and re-apply DFS BBA.
- □ Apply sextupole multiknobs to tune out IP aberrations.
 - Initially, tune on just IP dispersion and coupling using direct measurement with IP-BPM until beamsize <100nm.</p>
 - Measure IP dispersion by +/- 0.5% incoming E shift + linear fit to 10 IP BPM readings.
 - Measure coupling by kicking the beam at an appropriate phase upstream of FF in x and fit slope in y to 10 IP BPM readings.
 - When 100nm IP spot size reached, iteratively tune on vertical spot-size using Dy, Wy, <xy> and <x'y> knobs + sextupole tilt and dB scans.

BBA/Steering with Quad Movers

DFS + mover minimisation solution, use Matlab lscov to solve in a leas-squares sense, A*c=b with weight vector, ie. minimise: (b- A*c)'*diag(1/w^2)*(b - A*c), where:

$b = \begin{pmatrix} B \\ B \\ B \\ B \\ B \\ B \\ C \end{pmatrix}$	$B = \begin{pmatrix} b_2 \\ b_3 \\ \vdots \\ b_n \end{pmatrix}$	$A = \begin{pmatrix} T^{0} \\ T^{-} \\ T^{+} \\ diag(1) \end{pmatrix}$
---	---	--

$M_{i,j}^{XX} = R_i^q(2,1).R_{i,j}(1,2) + (R_i^q(1,1)-1)R_{i,j}(1,1) + R_i^q(3,1).R_{i,j}(1,3) + R_i^q(4,1).R_{i,j}(1,4)$
$M_{i,j}^{XY} = R_i^q (2,3) \cdot R_{i,j} (1,2) + R_i^q (1,3) \cdot R_{i,j} (1,1) + (R_i^q (3,3) - 1) \cdot R_{i,j} (1,3) + R_i^q (4,3) \cdot R_{i,j} (1,4) \cdot R_i^q (4,3) \cdot$
$M_{i,j}^{YY} = R_i^q (1,3) \cdot R_{i,j} (3,1) + R_i^q (2,3) \cdot R_{i,j} (3,2) + \left(R_i^q (3,3) - 1\right) \cdot R_{i,j} (3,3) + R_i^q (4,3) \cdot R_{i,j} (3,4) + R_i^q (4,3) \cdot R_i (3,4) + R_i^q (4,4) + R_i^q (4,4)$
$\left M_{i,j}^{YX} = \left(R_i^q(1,1) - 1 \right) R_{i,j}(3,1) + R_i^q(2,1) R_{i,j}(3,2) + R_i^q(3,1) R_{i,j}(3,3) + R_i^q(4,1) R_{i,j}(3,4) \right) \right _{i,j}$

(1	0	0			P(12)	0	0	0			P(14)		$\left(q_{2}^{x} \right)$
	-1	0	0			$K_{1,2}(1,2)$	0	0	0			$\Lambda_{1,2}(1,4)$		x
	$M_{2,3}^{XX}$	-1	0			$R_{1,3}(1,2)$	$M_{2,3}^{XY}$	0	0	•••	•••	$R_{1,3}(1,4)$		q_3^{n}
	$M_{2,4}^{XX}$	$M_{3,4}^{XX}$	-1			$R_{1,4}(1,2)$	$M_{2,4}^{XY}$	$M_{3,4}^{XY}$	0			$R_{1,4}(1,4)$:
ļ	÷	:	·.	·.	·	:	÷	÷	·.	·.	·	:		ax
T_{-}	$M_{2,n}^{XX}$	$M_{3,n}^{XX}$	$M_{4,n}^{XX}$		$M_{n-1,n}^{XX}$	$R_{1,n}(1,2)$	$M_{2,n}^{XY}$	$M_{3,n}^{XY}$	$M_{4,n}^{XY}$		$M_{n-1,n}^{XY}$	$R_{1,n}(1,4)$		q_{n-1}
1 -	0	0	0			$R_{1,2}(3,2)$	-1	0	0	•••		$R_{1,2}(3,4)$	c =	k_1^{λ}
	$M_{2,3}^{YX}$	0	0			$R_{1,3}(3,2)$	$M_{2,3}^{YY}$	-1	0			$R_{1,3}(3,4)$	C	q_2^y
	$M_{2,4}^{YX}$	$M_{3,4}^{YX}$	0			$R_{1,4}(3,2)$	$M_{2,4}^{YY}$	$M_{3,4}^{YY}$	-1			$R_{1,4}(3,4)$		a^{y}
ļ	÷	÷	·.	·.	·.	:	÷	÷	·.	·.	·.	:		4 3
	$M_{2,n}^{YX}$	$M_{3,n}^{YX}$	$M_{4,n}^{YX}$		$M_{n-1,n}^{YX}$	$R_{1,n}(3,2)$	$M_{2,n}^{YY}$	$M_{3,n}^{YY}$	$M_{4,n}^{YY}$		$M_{n-1,n}^{YY}$	$R_{1,n}(3,4)$:
														q_{n-1}^{y}

Quadrupole BPM Alignment

- Nulling Quad Shunting technique:
- To get BPM-Quad offsets, use downstream ~10
 BPMs for each Quad being aligned (include IP bpm for last few quads).
- Quad dK 100-80 %, use change in downstream BPM readouts to get Quad offset.
- □ Move Quad and repeat until detect zero-crossing.
- □ For offset measurement, use weighted-fit to downstream BPM readings based on model transfer functions: $x_{Quad} = \Delta x_{BPM} / (\Delta R_Q (1,1) * R(1,1) + \Delta R_Q (2,1) * R(1,2))$

12/18/2006

Sextupole BPM Alignment

- □ Move Sextupole +/- 0.5mm through beam.
- Fit quadratic function to downstream BPM response.
- □ Alignment from minimum of fit.

Sextupole Multi-Knobs

- Use orthogonalised x- and y-moves of sextupoles to correct vertical waist and dispersion + <x'y> coupling term.
- Additionally use orthogonal moves of 2 skew quads to tune <xy>.
- Higher-order aberrations tuning performed by simply scanning sextupole tilts + strengths.
- □ In simulation, apply iteratively until beamsize within 10% of perfect-lattice value (~35nm).

Linear Sextupole Multi-Knobs

	SF5	SF5 SD4 SF1		SD0
Y Waist	Waist -0.47(x) 1(x) -		-0.2(x)	-
Y Disp.	-	-	-0.68(y)	-1(y)
<x'y></x'y>	-	-	1(y)	-0.99(y)

	QK1X	QK2X	QK3X	QK4X
<xy></xy>	-0.92	0.21	0.20	1

Preliminary Results

□ WARNING:

- What follows are very preliminary results, optimisation of knob application needs to be carried out still.
- □ Also done with slightly older lattice.

Magnet – BPM Alignment

□ RMS alignment (100 seeds)

12/18/2006

Glen White - SLAC

Final Spot-Size Results

- 54% seeds
 converge <-
 39nm.
 30% seeds
 - never get to <100nm.

Glen White - SLAC

IP Size vs. Knob

12/18/2006

Glen White - SLAC

Summary

- □ More work needed getting all seeds to converge.
 - Evaluate order of knob application.
 - More averaging per scan.
- □ Convergence typically in <20 iterations:
 - Assuming 1 min per IP spot-size measurement (90 bunches @ 1.5Hz), 10 scan points per knob iteration and 1 cycle through Sext tilt/dB scans:
 - If completely automated, tuning would take ~ 4.5 Hours.
- Need to add Ground Motion, component jitter, incoming beam orbit + energy jitter, BPM scale and magnet strength drifts...