### Initial beam size commissioning for ATF2

T.Okugi

3rd ATF2 Project Meeting, KEK

12/19/2006

# Initial beam size commissioning

It is difficult to measure the beam size above 350nm with Sintake monitor.

How to achieve under 350nm beam size at IP

- One idea to use IP-BPM was proposed by Glen White yesterday.
- It is convenient to have the beam size monitor with 350nm resolution and with wide dynamic range around IP.
- This monitor should be as fast as possible.

Candidates for the Beam size monitor.

- Carbon wire scanners Well-developed devices and wide dynamic range, but pure resolution (1micron )

Honda BSM (presented by Y.Honda yesterday)
Good resolution, but not wide dynamic range (1.2-0.3micron?)

We cannot put the BSM at IP, because we will put the Shintake monitor at IP

- Where to put the BSM with a few hundred resolution??



If you put the 2<sup>nd</sup> IP BSM at s=20cm, sigma\_y = 50micron.

We don't have any beam size information from BSM.

However, we can make the beam size small at non-IP location by changing the strength of the final doublet, QF1 and QD0.



The vertical beam size at s=+/-50cm Is 180nm.

It is possible to minimize the nonlinear field around IP by using BSM at s=+/-50cm.



# Simple simulation of beam size tuning

Assumed errors 1% strength errors for all quads and sexts No misalignments

- QF1 and QD0 fields are set to be ax=ay=0 at s=+/-50 cm.
- Sextupole fields were optimized with BSM with 200nm resolution at s=+/- 50cm.
- QF1 and QD0 fields are set to be ax=ay=0 at s=0 and measure the beam size.



We can achieve comparable beam size to the resolution of both side of BSMs.

#### Beam position scan for beam size measurement.

- Carbon wire scanner needs the beam scan, but Shintake monitor and Honda monitor groups said not to use at the presentation in yesterday.

Methods 1; by using sweeping magnet Advantage : Easy to operate Easy to calibrate Disadvantage : We need additional device at crowed location.

Methods 2; by using magnet mover. Advantage : No additional devices Disadvantage : We need careful calibration and take care of beam size enhancement.

### Simulation results of the vertical position scan by magnet mover

Example of the beam size enhancement by mover scan



Beam size is very sensitive for magnet position of some quads.

# Simulation results of the vertical position scan by magnet mover

| Magnet Name | Step (Dy = 30nm) | Scan Range ( < 40nm ) |
|-------------|------------------|-----------------------|
| QF5         | 400nm            | +/- 850nm             |
| QF5A        | 300nm            | +/- 4000nm            |
| QD4         | 200nm            | +/- 3000nm            |
| QD4A        | 200nm            | +/- 2000nm            |
| QD2B        | 300nm            | +/- 450nm             |
| QF3         | 2000nm           | +/- 50nm              |
| QD2A        | 2000nm           | +/- 50nm              |
| QF1         | 100nm            | +/- 2200nm            |
| QD0         | 30nm             | +/- 2100nm            |
|             |                  |                       |

Some magnets are narrow scan range. Some magnets are required very small step size for scanning.

Other magnets has step size errors from beam optics ...

### Discussion

- 1) BSM around IP
  - Enough space to put BSM around IP ?
  - Should we prepare the additional BSM, Carbon wire scanners (1micron resolution), Honda monitor for the ATF2 commissioning ?
- 2) Vertical beam position scan at IP
  - Enough space to put sweeping magnet between QDO and IP?
  - Should we prepare the sweeping magnet, or use the vertical mover of quads for vertical position scan?