Updates

3rd ATF2 Project Meeting, 18-20 December 2007

S.Redaelli Table 14: Technical specifications of the stiff isolation system Stacis2000 by TMC.

Parameter	Specification
Number of isolators	3 or 4
Active degrees of freedom	6
Active bandwidth	$0.3\mathrm{Hz}$ to $250\mathrm{Hz}$
Resonant frequency (active system)	$pprox 0.2\mathrm{Hz}$
Resonant transmissibility	1.1
Dynamics range	$> 60 \mathrm{dB}$
Static load capacity per isolator	$182 \mathrm{kg}$ to $1590 \mathrm{kg}$
Maximum displacement	$12\mu m$ below $10Hz$ (peak-to-peak)

B.Bolzon

Active Degrees of Freedom	6
Active Bandwidth	0.5 to >100Hz
Peak in Transmissibility (active system)	0.4Hz
Resonant Transmissibility	1.1
Isolation Margin	>90% above 2Hz
Settling Time (90% down from peak)	200ms
Static Load Capacity/Isolator	182kg to 500kg
Number of Isolators	3 or 4
Maximum Displacement	15µm peak-peak below 10Hz

1. Introduction

Presentation of the system

Active Degrees of Freedom	6
Active Bandwidth	0.5 to >100Hz
Peak in Transmissibility (active system)	0.4Hz
Resonant Transmissibility	1.1
Isolation Margin	>90% above 2Hz
Settling Time (90% down from peak)	200ms
Static Load Capacity/Isolator	182kg to 500kg
Number of Isolators	3 or 4
Maximum Displacement	15μm peak-peak below 10Hz

✓ Active degrees of Freedom: X, Y, Z directions, roll, pitch and yaw

✓ Advantage/Disadvantage of the use of 3 isolators instead of 4:

- \rightarrow Better ground-to-table transverse and longitudinal transmission
- \rightarrow Slightly worse vertical stability
- Adopt the four feet system because vertical tolerances tighter than the horizontal ones
- ✓ **Resonant frequency (active system):** 0.4Hz but depends on the load₂₆

3. Vibrations of the active table

Vertical direction: integrated RMS

✓ **Below 0.8Hz:** Amplification on the table

✓ Above 0.8Hz: Damping on the table

 \rightarrow Factor 7 of damping above 1.5Hz

3. Vibrations of the active table

Summary: Transfer function of the table integrated RMS

From 0.1Hz to ~0.8Hz: Amplification on the table in the 3 directions

 \rightarrow Vertical direction: up to a factor 1.5 of amplification (at 0.6Hz)

✓ Above ~0.8Hz: Damping on the table in the 3 directions

 \rightarrow Vertical direction: factor 0.15 of damping at 1.5Hz

> 1Hz

MONALISA

Oxford university

ATF2: Measuring Motion of Shintake Monitor with Respect to Final Doublet

 Idea of Compact Straightness Monitor (CSM) presented in May:

Attaching CSM: Shintake Monitor

- What do we want to monitor:
- Monitor motion (angular vibrations) of "intersection mirrors"
 - Its already a mirror
 - Has to be done in air (Requires close distance monitor)
 - Needs to correlate the motion measurements of the two mirrors.
- Monitor off-axis camera
 - Easier setup
 - Mor indirect measurement

Attaching CSM: Focusing Magnet

- Unsolved Problem on how to monitor magnetic centre of focusing magnet.
 - Attach CSM to one point of magnet
 - Use several distance metres to monitor breathing of magnet
 - Correlate with temperature measurements

installation schedule

- Oct. 2008 ~ Mar. 2009
 - beam line comissioning
 - Shintake monitor comissioning
 - continue IP-BPM development at the device test section
- Apr. 2009 ~
 - move to IP area
 - a new alignment mover is needed because the FFTB mover will be used for a magnet
 - IP-BPM mode
 - shift the IP at the center of IPBPM quartet
 - Shintake mode
 - calibrate (check resolution) BPM inside the collision chamber using the IPBPM

