The physics chapters in the GDE documents

Klaus Mönig

On behalf of Abdelhak Djouadi, Joe Lykken, Klaus Mönig, Yasuhiro Okada, Mark Oreglia and Satoru Yamashita

Introduction

Documents to be produced by end 2006:

- GDE ILC Reference Design Report (incl. a short physics chapter)
- Detector Concepts Report (incl. a longer physics chapter)

Editors of the physics chapters (1 exp., 1 theo. / region):

- America: Mark Oreglia, Joe Lykken
- Asia: Satoru Yamashita, Yasuhiro Okada
- Europe: Klaus Mönig, Abdelhak Djouadi Timescale
- Bangalore: Presentation and discussion of outline
- Vancouver (July): Detailed discussion with the community
- Valencia (November): Presentation of final draft

Proposed Outline

- Introduction
- Physics landscape in 2015 (incl. possible outcome from LHC)
- Important open questions in particle physics
- Possible running scenario for ILC
- Physics signals at the ILC
- The Higgs system
- Couplings of gauge bosons (GigaZ, TGCs)
- Top quark physics and QCD
- Supersymmetry
- Alternatives to SUSY

Remarks on the outline

- The outline is strictly physics driven
- "Signals" like Z' appear in different places
- The main ones are collected in the "Physics signals" subsection of the introduction and then referred to later
- The chapter has to justify 500 GeV as a machine worthwhile on its own and the need for a 1 TeV upgrade
- The connections to LHC, cosmology etc. have to be stressed
- What about simultaneous running with LHC?
- "Standard physics" including Higgs will be described in detail
- "New physics" will be described in form of a few examples

Remarks on the outline (II)

- Supersymmetry:
- Bulk scenario for high energy extrapolation
- DM compatible parameter summary
- CP violating models
- Impact on neutrino physics (GUT, seesaw)
- Alternatives to SUSY:
- Emphasis on models that give answers to electroweak symmetry breaking and dark matter
- Especially think about Little Higgs Extra dimensions (ADD and universal)
- Need to discuss also models without Higgs (Higgsless, SEWSB)

Simulation work

- We need to prove that we can do the physics we claim
- Ideally use full simulation for some difficult key channels e.g.:
$-\mathrm{BR}(H \rightarrow c \bar{c})$
$-\tilde{\tau}$ in low Δm SUSY
- WW-ZZ separation
- Other channels like ZHH may have to live with a hybrid solution
- However the simulation has to be done with the detector we think to have for the ILC (i.e. $\Delta E / E=30 \% / \sqrt{E}$)
- If we don't reach this in time we have to stay with fast simulation
- Some other missing items:
- Top weak couplings (which energy is needed?)
$-\mathrm{q} \overline{\mathrm{q}}$ production: statistical and systematic errors on σ and $A_{F B}$

Requirements from theory

- For many items one can use available material.
- For a few points, one needs some updates:
- Determination of quark masses, ...
- Scalar Higgs potential with effects of New Physics
- Chiral Lagrangian approach for the no Higgs scenario
- Update/extend benchmark points (lines?) for SUSY ...
- For some points, one needs new studies:
- Model independent study of Higgs production and decay
- DM, CPV, Baryogenesis
- KK Dark Matter at ILC? Other points with extra dims?...
- Joint experimental/theory new effort is needed:
- Strongly interacting Higgs sector
- Effect of τ polarisation in rejecting bkg for low $\Delta m_{\tilde{\tau}}$
- Scenarios for complementarity between LHC and ILC

Community Input

- We encourage comments for all of you
- Use the wiki page we will set up on www.linearcollider.org
- Physics groups should keep us informed of new developments
- And you can reach each of us:
- klaus.moenig@desy.de
- yasuhiro.okada@kek.jp
- lykken@fnal.gov
- m-oreglia@uchicago.edu
- satoru@icepp.s.u-tokyo.ac.jp
- djouadi@th.u-psud.fr

