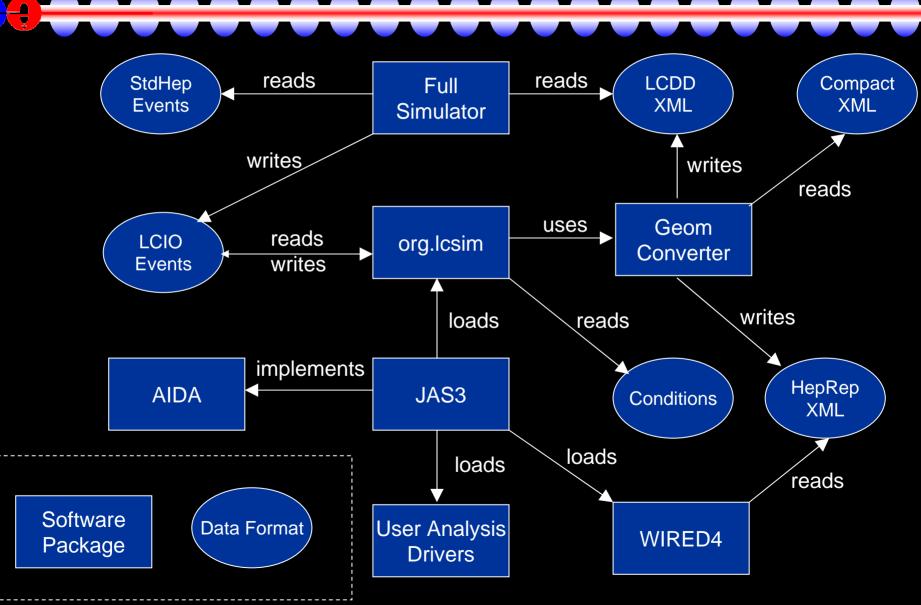

ILC Detector Simulations: Overview of the US Framework

Goals

- Geometry Description
- SLIC Simulation Package
- org.lcsim Reconstruction Package
- Tools JAS, WIRED, Grid
- Recent Developments
 - PFA, Tracking, WIRED enhancements


³

- Facilitate contribution from physicists in different locations with various amounts of time available
- Use standard data formats, when possible.
- Provide a general-purpose framework for physics software development.
- Develop a suite of reconstruction and analysis algorithms and sample codes.
- Simulate benchmark physics processes on different full detector designs.

Overview: Key Features

- Cross-platform compatibility
 - Java reconstruction software is write/run anywhere.
 - <u>Maven</u> for easy builds
 - Encourage use of full IDE's for development
 - Netbeans, Eclipse
 - The simulation software runs on OSX, Linux and Windows
 - GNU Autoconf/Make build system
- Supports ILC software standards
 - AIDA, LCIO, StdHep, HepRep
- Easy to model different detector designs
 - Geometry, materials, readout, and IDs easily customized.
 - Write hooks to Java classes for detector components
 - Convert to several different output geometry formats

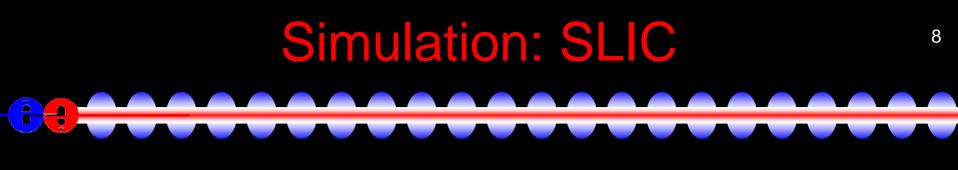
Overview: Framework Diagram

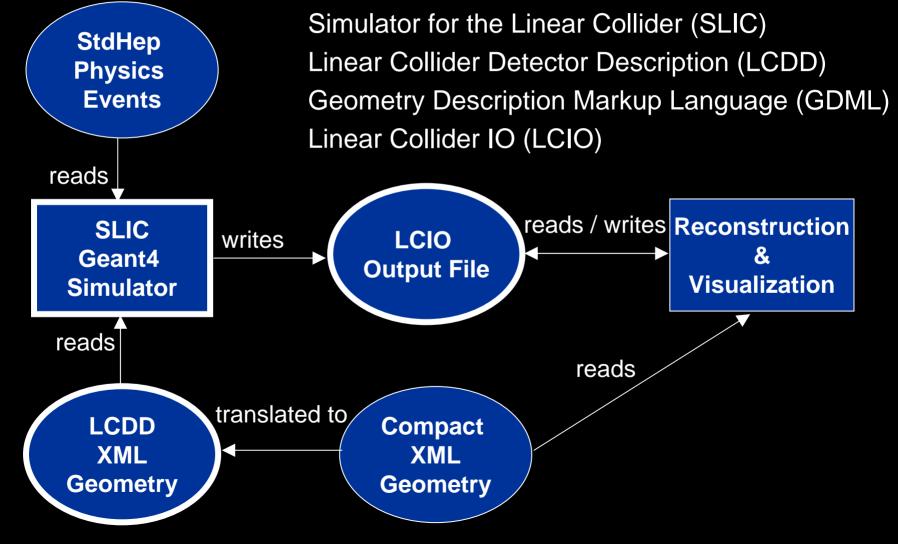
6 **Contorveter**

GeomConverter					
Input C:\work\pct_test.xml Output C:\work\pct_test.lcdd Format lcdd	Browse Browse			LCDD	→SLIC
Leonaria heprep ted GODL Convert Exit				HepRep	→ WIRED4
Compact Detector		eometry onverter		Ποριτορ	
Description				GODL	→ Lelaps
nvert from compact t	0				
LCDD for simulator	(SLI	C)			
HepRep for event di GODL for fast MC (L	splag	y (WIRED4)		Java Objects	— → org.lcsim
Java Objects for rec	onst	ruction (org.lc	sim)		

Detectors: Zip Files

Detector conditions bundled into downloadable
 Zip file

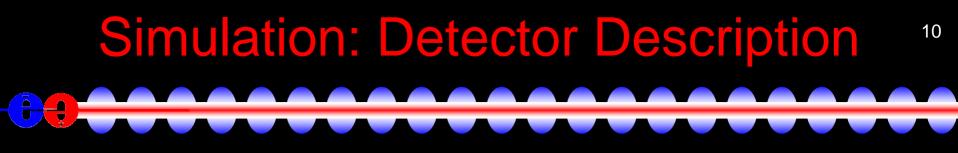

- Can also point org.lcsim to custom and development versions
- Canonical detectors location
 - http://www.lcsim.org/detectors
- sid00 examples


ļ

- Zip file
 - http://www.lcsim.org/detectors/sid00.zip
- LCDD
 - http://www.lcsim.org/detectors/sid00/sid00.lcdd
- Compact
 - http://www.lcsim.org/detectors/sid00/compact.xml

sid00

-- ClusterParameters.properties -- IDEfficiency.properties -- IndividualParticleReconstruction.properties -- LongitudinalHMatrix.hmx -- SamplingFractions -- EMBarrel.properties -- EMEndcap.properties -- ForwardEMEndcap.properties -- ForwardLuminosityMonitor.properties -- HADBarrel.properties -- HADEndcap.properties -- LumEndcap.properties -- MuonBarrel.properties -- MuonEndcap.properties -- SimpleTrack.properties -- TrackParameters I-- FullBarrelResolutionBc.ini I-- FullBarrelResolutionNbc.ini -- sid00_lcdtrk.input -- TrackParameters.properties -- compact.xml -- detector.properties -- digisim -- digisim.steer -- sid00.lcdd -- sid00.zip

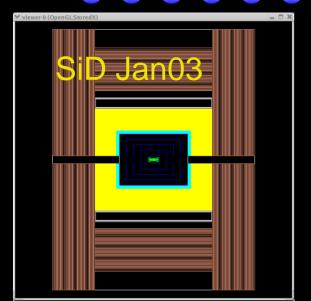

Simulation: SLIC Commands ⁹

All command-line options have equivalent Geant4 command
Sample command

slic -g geometry.lcdd -i events.stdhep -x -O -l LCPhys -r 1000

Equivalent macro

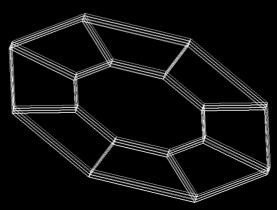
/lcdd/url geometry.lcdd /run/initialize /physics/select LCPhys /generator/filename events.stdhep /lcio/fileExists delete /lcio/autoname /run/beamOn 1000

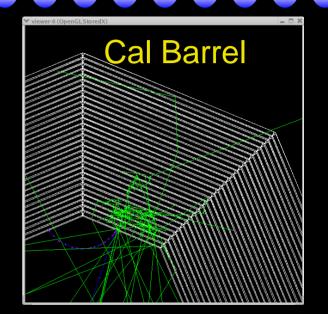


LCDD

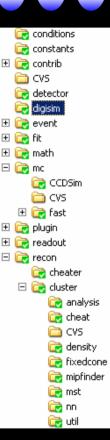
Identifiers Sensitive Detectors Regions Physics Limits Visualization Magnetic Fields Expressions (CLHEP) Materials Solids Volumes

GDML


Simulation: Example Geometries



Test Beam

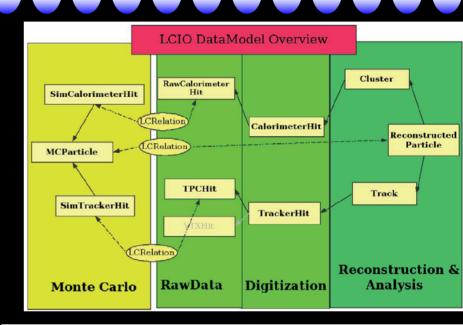

11

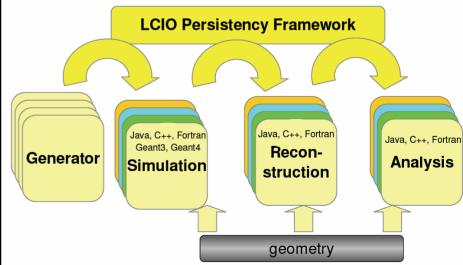
MDI-BDS

Reconstruction and Analysis Software

• org.lcsim

- Reconstruction and analysis package
- GeomConverter
 - Geometry system
- FreeHep
 - Physics and graphics utilities
- JAS3
 - Studio application for analysis and development
- WIRED4
 - Event display
- LCIO
 - Object model and persistency
- AIDA
 - Plotting API and data format




12

LCIO

- Object model and persistency
 - Events

- Monte Carlo
- Raw
- Event and run metadata
- Reconstruction
- Parameters, relations, attributes, arrays, generic objects, ...
- All the ILC simulators write LCIO
 - Enables cross-checks between data from different simulators
 - Read/write LCIO from
 - Fast MC / Full Simulation
 - Different detectors
 - Different reconstruction tools

LCIO: Data Samples

LCIO data samples available via anonymous FTP

- <u>http://www.lcsim.org/datasets/ftp.html</u>
- Data sets
 - ILC500
 - 500 GeV machine parameters
 - ILC1000
 - 1 TeV machine parameters
 - singleParticle
 - Single particle diagnostic events
 - Zpole
 - Zpole diagnostic events

Organization

- [event type] complex or single particle event type, e.g. ZZ, ZPole, muons, etc.
 - $\circ~stdhep$ input StdHep files used to generate the events
 - [detector name] detector geometry tag, such as <u>sidaug05</u>
 - [data file format] output datafile format, e.g. LCIO or SIO
 - [simulator] simulator that generated the events, e.g. lcdg4, slic, lelaps, mokka, etc.
 logs simulator job logs

org.lcsim: Goals

- Retain core functionality from hep.lcd package
 - Full suite of reconstruction and analysis tools
- Update to use latest LCIO for IO and as basis for simulation,
- raw data and reconstruction event formats
- Insulate users from raw LCIO structures
- Update and simplify framework using experience from hep.lcd
 - Provide good tutorial documentation
- Detector Independence
 - •Update to Java 1.5
 - Simple, easy to learn, efficient, OO language
 - Many improvements since hep.lcd framework was created
- Ability to run standalone (command line or batch) or in JAS3

Reconstruction/Analysis Overview¹⁶

- Java based reconstruction and analysis package
 - Runs standalone or inside Java Analysis Studio (JAS)
 - Detector Geometry Independent
 - Read properties of detectors at runtime
 - Encourage algorithm developers to avoid detector and geometry assumptions
 - Fast $MC \rightarrow$ Smeared tracks and calorimeter clusters
 - Full Event Reconstruction
 - detector readout digitization (CCD pixels & Si μ-strips)
 - *ab initio* track finding and fitting for ~arbitrary geometries
 - multiple calorimeter clustering algorithms
 - Individual Particle reconstruction (cluster-track association)
 - Analysis Tools (including WIRED event display)
 - Physics Tools (Vertex Finding, Jet Finding, Flavor Tagging)
 - Beam background overlays at detector hit level
 - Derived from earlier hep.lcd package
 - Updated to use Java 1.5, LCIO
 - More detailed reconstruction algorithms

org.lcsim: Status

Physics Utilities

- Stdhep Reader
- 3, 4-vector utilities
- diagnostic generator
- Jet finder, event shape utilities

Conditions framework

- Ability to read detector constants from zip file
- To define new detector just create new zip file and place on web
- File is read and cached locally
- Ability to read compact geometry file

Driver framework

- All reconstruction algorithms and user analysis written as Drivers
- Read/Write access to event
- Drivers can be chained and nested

FastMC

- parameterized track and cluster smearing
- Smearing constants read from conditions system
- Produces ReconstructedParticles

Digitization

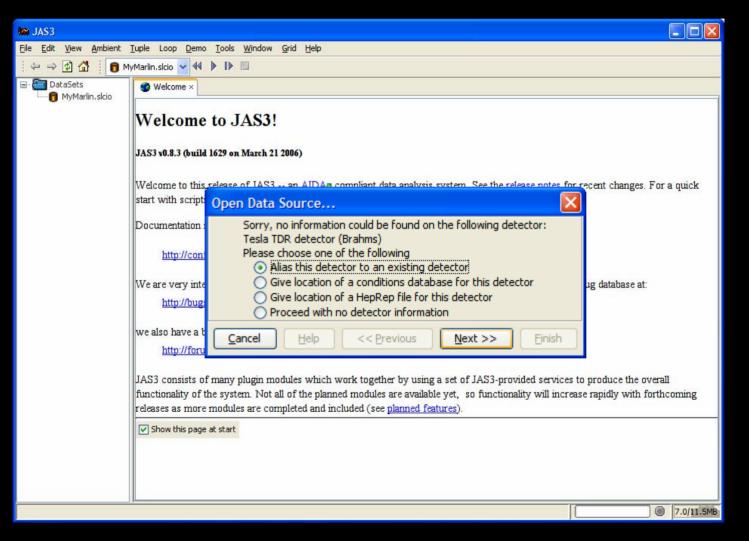
- Digisim–Calorimeter digitization
- Tracker, Vertex digitization
- Clustering
 - Cheater
 - Cone
 - Nearest Neighbor
 - Minimal Spanning Tree
- Tracking
 - SLDWeightMatrix, Kalman Filter, TRF
 - Track Cheater
- Vertex Fitting
 - ZVTop4
- Analysis Examples
 - Cluster Diagnostics
 - SLICDiagnostics
 - Particle Flow Analysis
 - ClusterID
 - ParticleID

Reconstruction and Analysis ¹⁸

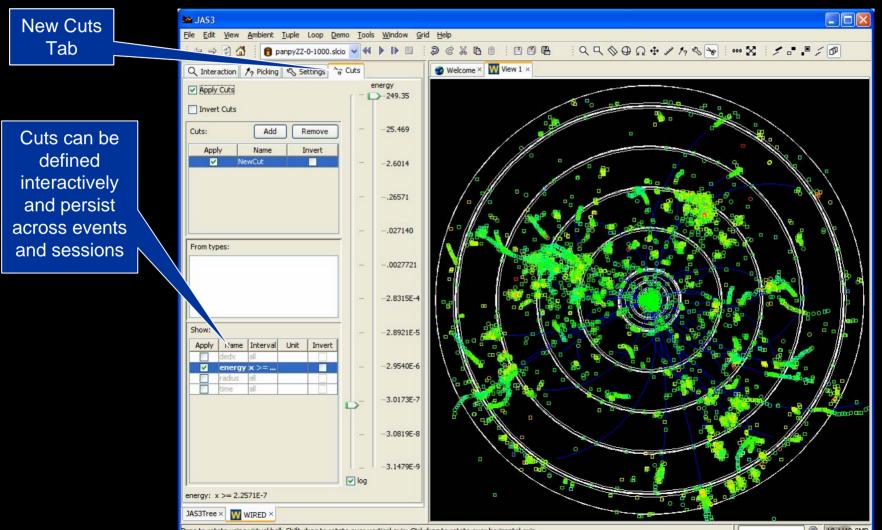
- Org.lcsim contains a "contrib" area
- Encourage users to place ongoing work in this area, even if still "in progress"
 - Last six months have seen greatly increased use of this area
 - ClusterAnalysis utilities
 - "SODTracker"
 - "Garfield Track Finder" (K0 decays)
 - "PFA Template"

• PFA, PFA "Template", DigiSim

- Steve Magill, Mat Charles, Norm Graf
- Tracking
 - Norm Graf
- Demo/Tutorials on Wednesday

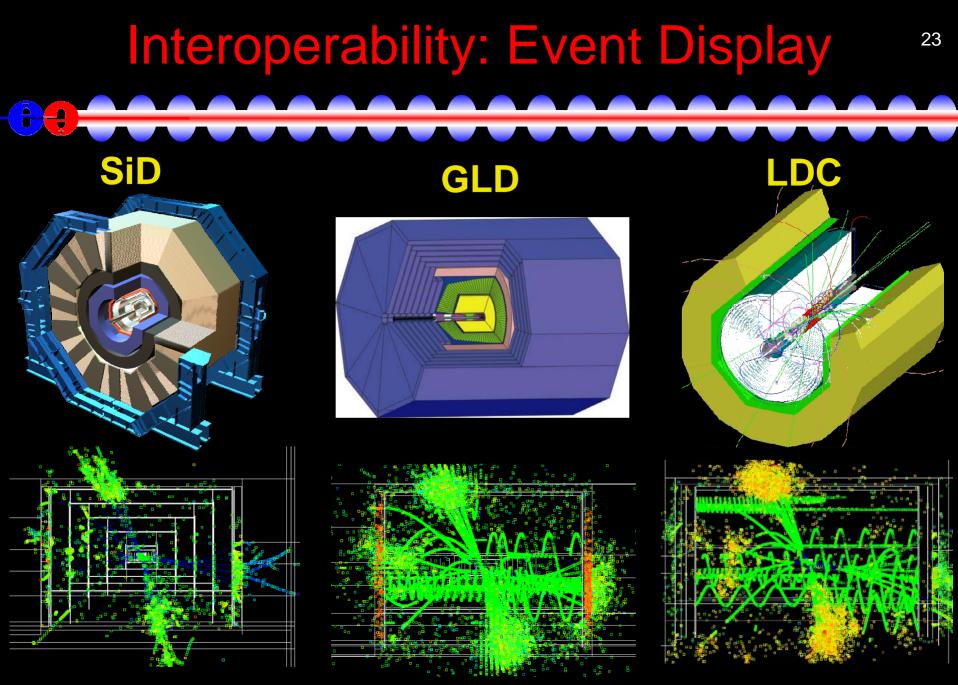

Tools: JAS3

IN JAS3 File Edit View Tuple Loop LCIO Window Help 🟮 pythiaZPolebbbar-0-1000_SLIC_v1r13p3_sid00.slcio 🔻 📢 🕨 📗 Socx Bo Scot $\langle - \rangle > 0$ 🛅 DataSets 🖉 Eur ت 🖬 🖂 **б**а? 🖂 E Programs hage 2 ClusterFinding 01 gauss 🛅 aida22594aida EcalBarrHitsNNClusters/energy Entries: 15483 HcalBarrHitsNNClusters/delta phi 10000 + Th Mean: 0.84465 - qauss 8 3 3 4 3 3 3 4 6 2 2 Rms: 1.4477 OutOfRange : 3 HcalBarrHitsNNClusters/delta phi Entries : 2196 1000 ± Mean: 0.088715 1.4588 Rms : NaN : 30 SumOfWeights 2166.0 100+ gauss amplitude 617.94±17.5 0.014250±7.6218E-3 mean : 0.32966±0.00549 sigma: v2 12.552 10 ± or Π 2 4 10 12 14 16 18 20 Th 3371 c [] 🛛 Dage 3 EcalBarrHitsNNClusters/clusters Entries: 456 35 Mean : 33.953 Rms: 14.789 30 25 20 0 ТТ 10 20 30 40 50 60 70 JAS3Tree × WIRED × 0


9:28:04 PM ----- compile successful

Compiler × Record Loop ×

Recent Developments: 21



22 **Recent Developments: WIRED**

)rag to rotate using virtual ball; Shift-drag to rotate over vertical axis; Ctrl-drag to rotate over horizontal axis.

19.1/40.0ME

Z Higgs (M_H=120 GeV) \rightarrow same simulator, three different full detector geometries

Recent Developments: 24 Grid Based Analysis

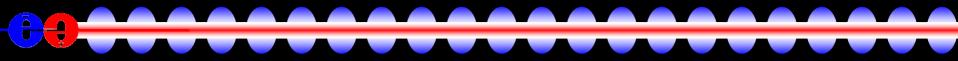
JAS3	
File Edit View Tuple Loop LCIO Tools Window Grid	Help
	GRID: panpyZh120-0-500_SLIC_v1r9p3_sidaug05.slcio 🔽 帐 🕨 🛛 🕪 🔳
⊡ 🚰 Grid	🔮 Dataset Analysis Grid Service Plugin × 💽 HiggsAnalysis2. java ×
Host Information Griddev07 (Status:Dataset staged) Griddev19 (Status:Dataset staged) Griddev19 (Status:Dataset staged) Griddev17 (Status:Dataset staged) Griddev17 (Status:Dataset staged) Griddev15 (Status:Dataset staged) Griddev12 (Status:Dataset staged) Griddev10 (Status:Dataset staged) Griddev08	1 import hep.aida.lAnalysisFactory; 2 import hep.aida.lHistogram1D; 3 import hep.aida.lHistogram2D; 4 import hep.aida.lHistogramEactory; 5 import hep.physics.vec.VecOp; 6 import java.util.ArrayList; 7 import org.lcsim.event.EventHeader; 9 import org.lcsim.event.MCParticle; 10 import org.lcsim.event.MCParticle; 11 12 12 public class HiggsAnalysis2 exten 13 { 14 private static double mZO = 91.18 15 private static double energyCM = 16 private MCParticle z1, z2; 17 enum PType (MUON, ELECTRON 18 private IHistogram1D h_ptot; 19 private IHistogram1D h_cosThet; 19 private IHistogram1D h_muonCo 12 private IHistogram1D h_electronCosThet; 12 private IHistogram1D h_electronCosTheta; 13 private IHistogram1D h_electronCosTheta;
	 26 private IHistogram1D h_muonN; 27 private IHistogram1D h_electronN;

Getting Started²⁵

- Anyone is welcome to use/contribute to this framework
- Easiest way to start
 - http://lcsim.org
 - Follow "Getting Started Link"
 - After installing JAS use the "Help, Examples"

a JAS3				
Edit View Ambient Tuple Loop Demo	Tools <u>Wi</u> ndow <u>G</u> rid <u>H</u> elp			
> @ 🖪				
Examples ×				
org.lcsim exa	mples			
These examples are writ menu.	ten using the Java language. After opening them you need to compil	e and load them, and then use feed data to the	em using the Run	
Analysis101	ntro to analysis with AIDA.	1		
	Add a boolean value to the EventHeader and read it back again from different Driver.			
	ReconCheater example that makes perfect clusters, tracks, and econstructed particles.			
ClusterFinding	ind clusters using the Nearest Neighbor clusterer.			
DigiSimExample I	Digitization example using the Digisim package.			
EventGenerator S	Simple diagnostic event generator.			
FastMC	Run the Fast MC.			
JetFinding	Jse the Jet Finder.			
LCIOOutput V	Vrite LCIO output.			
NestedDriverExample	Vest analysis Drivers.			
PrintEventHeader	Print the EventHeader of each event			
SkipEvent.java S	Skip events using the NextEventException			
org.lcsim Jython	examples for advanced users	-		
These examples are written in Jython. They have to be executed from within mainLoop py, which is capable of executing Java examples as well. You will				
have to provide data samples by modifying mainLoop.py. For a Tutorial visit <u>Writing a Jython Driver</u>				
mainLoop.py The Main Jython wrapper to load any other Java or Jython example				
Analysis102.py A mo	dified Jython version of Analysis101.java. Analysis101 and Analysis1	02 be run simultaneously in mainLoop.py.		

Documentation 26

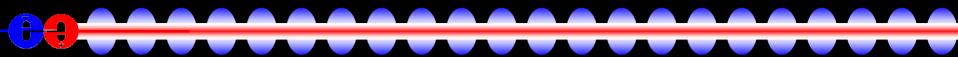

- IIC Wiki (confluence) used for supplementary docs
 - HTML-like syntax
 - Export to PDF
 - Need account to contribute (email Tony Johnson)
- Doxygen for C++ documentation
 - SLIC, LCDD
- JavaDoc for Java documentation
 - org.lcsim, GeomConverter
 - Generated automatically along with website by Maven

Links

- Wiki http://confluence.slac.stanford.edu/display/ilc/Home
- Icsim.org <u>http://www.lcsim.org</u>

ļ

- org.lcsim <u>http://www.lcsim.org/software/lcsim</u>
- Software Index <u>http://www.lcsim.org/software</u>
- Detectors <u>http://www.lcsim.org/detectors</u>
- ILC Forum <u>http://forum.linearcollider.org</u>
- LCIO <u>http://lcio.desy.de</u>
- SLIC <u>http://www.lcsim.org/software/slic</u>
- LCDD <u>http://www.lcsim.org/software/lcdd</u>
- JAS3 http://jas.freehep.org/jas3
- AIDA <u>http://aida.freehep.org</u>
- WIRED <u>http://wired.freehep.org</u>


Extra Slides

Overview: Key Features (cont'd) ²⁹

Flexibility

- Reconstruction and analysis
 - JAS3 analysis environment
 - Load/unload Java classes interactively
 - Java libraries automatically downloaded
 - FreeHep codebase
 - AIDA, Wired, HepRep, ROOT, StdHep, ...
- Simulation
 - XML detector input \rightarrow No user C++ code required.
 - Drive from command-line or macros (1-to-1)
 - Geant4 MC toolkit
 - Multiple physics list selection

Detectors: Compact Detector Description

30

Shorthand format for detector description

- SiD 00 \rightarrow 600 lines of XML
- Describes
 - Detector metadata
 - Materials
 - Readouts and identifiers
 - Detector components
 - Dimensions
 - Layering
 - Magnetic field

31 COMPACT XML Example 31

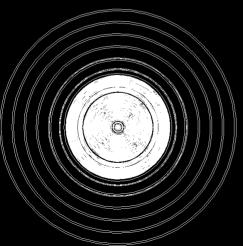
Two layer stacks in an ECAL barrel

```
<detector id="2" name="EMBarrel" type="CylindricalBarrelCalorimeter"</pre>
readout="EcalBarrHits">
     <dimensions inner r = "150.1*cm" outer z = "208.0*cm" />
     <layer repeat="20">
      <slice material = "Tungsten" thickness = "0.25*cm" />
      <slice material = "G10" thickness = "0.068*cm" />
      <slice material = "Silicon" thickness = "0.032*cm" sensitive = "yes" />
      <slice material = "Air" thickness = "0.025*cm" />
     </layer>
     <laver repeat="10">
      <slice material = "Tungsten" thickness = "0.50*cm" />
      <slice material = "G10" thickness = "0.068*cm" />
      <slice material = "Silicon" thickness = "0.032*cm" sensitive = "yes" />
      <slice material = "Air" thickness = "0.025*cm" />
     </layer>
 </detector>
```

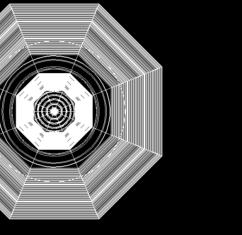
32 Detectors: Repository

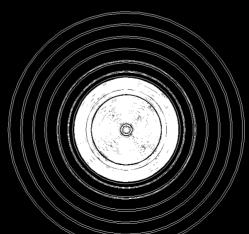
- Detector descriptions stored in CVS Project *LCDetectors*
- Easy to add new detectors based on existing ones
- All models in CVS periodically replicated to WWW locations
- Models

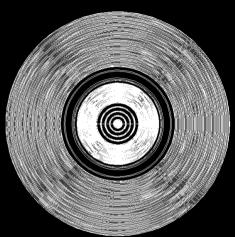
cdcaug05, cdcaug05_ecal150, cdcaug05_np, cdcaug05_rpchcal, gldaug05, hd3_1-oct05, ld3_1-oct05, ldcaug05, sdfeb05, sdjan03, sid00, sidaug05, sidaug05_20mr, sidaug05_4tesla, sidaug05_gemhcal, sidaug05_np, sidaug05_polyhedra, sidaug05_scinthcal, sidaug05_tcmt, sidmay05, sidmay05_20mr, sidmay05_2mr, sidmay05_np, sidmay05_scinthcal


Detectors: Geometry Displays

- Q


hd3_1-oct-05


sidaug05_polyhedra


sid00

33

ld3_1-oct-05

gldaug05

Geant4-generated HepReps drawn by WIRED4.

Simulation: LCDD Data Binding ³⁴

Area	Root Element	Geant4 Class(es)		
Sensitive Detectors	<sensitive_detectors></sensitive_detectors>	G4VSensitiveDetector		
Identifiers	<iddict></iddict>	NA (custom classes)		
Regions	<regions></regions>	G4Region, G4VUserRegionInformation		
Physics Limits	limits>	G4UserLimits		
Visualization	<display></display>	G4VisAttributes		
Magnetic Fields	<fields></fields>	G4MagneticField		
Constants	<define></define>	NA (CLHEP expressions)		
Materials	<materials></materials>	G4Material, G4Element		
Shapes	<solids></solids>	G4VSolid		
Volumes	<structure></structure>	G4LogicalVolume, G4VPhysicalVolume		

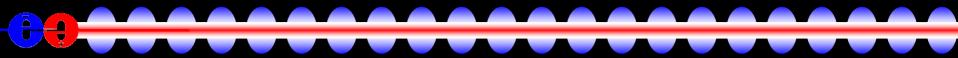
Event Display: WIRED and HepRep ³⁵

- HepRep file format
 - Generic format for event display
 - GeomConverter streams HepRep data to WIRED.
 - Also written out by Geant4
- WIRED4
 - Layers for detector, hits, MCParticles, etc.
 - Rotation, zoom, panning, picking
 - Interactive activation/deactivation of objects in display
 - Writes to PNG, JPG, WMF, HepRep, etc.

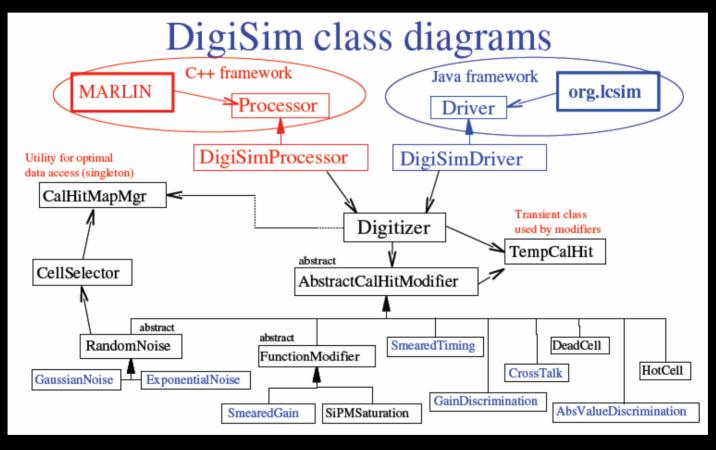
AIDA and Plotting ³⁶

• JAS3

- Interactive plotting
- Supported plot types
 - Histograms, clouds, profiles (1D + 2D)
- AIDA API supports 3D plot creation
 - Open Scientist, PAIDA can plot these.
- N-tuples still not very functional, but doesn't seem to be too limiting to analysis. (?)
 - Need binary format → HDF5 ?
- Implementations
 - JAIDA/JAS3, Anaphe, OpenScientist, PAIDA (others?)


Event Generation

• Still a messy area \rightarrow not much integration

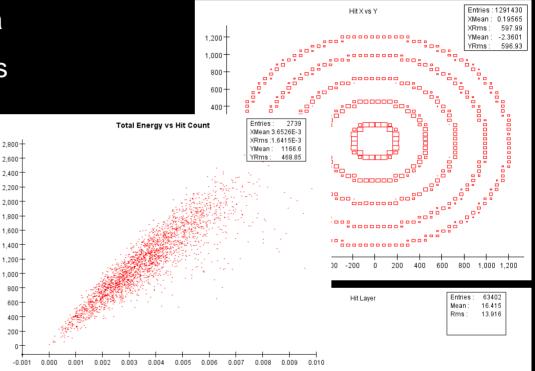

- Generation usually based on custom compiled code using a particular FORTRAN or C++ library
- Different HEPEVT interpretation depending on generators
- Some generators more "friendly" than others
- Physics generators
 - Pythia, Pandora-Pythia
 - ISAJET
 - WHIZARD
- Single Particles
 - Geant4 GPS
 - Java Diagnostic Event Generator
- Thoughts
 - Would be very useful to have a wrapper similar to ATLAS EvtGen
 - Python probably most promosing for this (or Java)
 - Usually best to rely on existing (debugged/checked) StdHep files

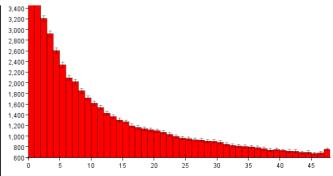
Reconstruction: Software Development ³⁸

- Required tools
 - Java 1.5
 - Maven
- Recommended tools
 - Netbeans
 - Tortoise CVS (Windows)
- CVS account
 - Contact tony_johnson@slac.stanford.edu
- SLAC CVS projects
 - Icsim, GeomConverter, LCDetectors, SlicDiagnostics, freehep, etc.
- org.lcsim contrib area
 - WIP, personal, or non-compiling codes

³⁹

 Goal: a program to parametrically simulate the signal propagation and digitization processes for the ILC detector simulation

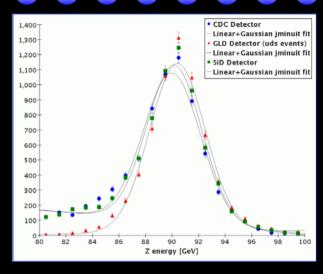

Author: Guilherme Lima

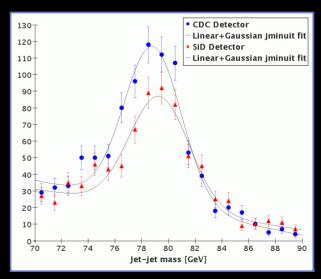

Example Project: SlicDiagnostics

- Diagnostic plots of event data
 - MCParticles, hits, clusters
- Run on different detectors
- Easy to use and setup
 - Maven project
- SLAC CVS project

Ĵ

- SlicDiagnostics
- Author: Jeremy McCormick

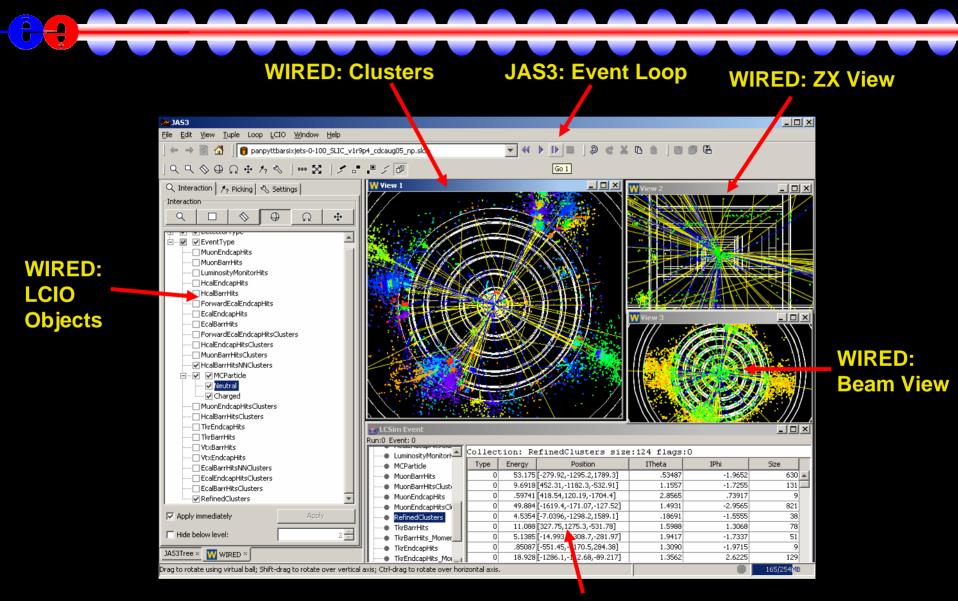




40

Example Project: Recon Cheater 41

- Makes reconstruction objects from event data
 - Tracks
 - Clusters, refined clusters
 - Reconstructed particles
- Benchmark
 - Detector designs
 - Compare reconstruction algorithms
- Drivers
 - ClusterCheater
 - TrackingCheater
- Customizable using CheatingTable conditions
- Author: Mike Ronan

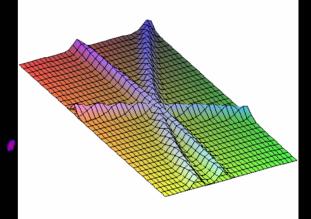

- Same analysis can be run on LCIO files from different simulators
 - Compare performance of detectors
 - e.g. plot overlays
 - Cross checks
 - Physics
 - Geometries
 - LCIO output
 - Generate LCIO reconstruction objects from different simulator data
- Plot data interchange using .aida files
- JAS3 can also read/write ROOT and PAW files using Freehep libs.
- Some problems with decoding IDs from non-lcsim detectors
 - Working on this!
 - Probably should add more Id'ing metadata to LCIO format

JAS3

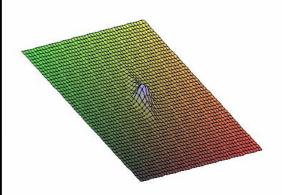
Physics analysis environment

- Additional functionality with plugins
- Iterative, event-based analysis model
 - quick development, debugging, ad hoc analysis
- Dynamically load / unload Java analysis drivers
 - From JAR files in the classpath
 - Written and compiled by user
- Plotting engine
 - 1D, 2D histograms, clouds, profiles
 - Output to PNG, JPG, WMF, PS, etc.
- Integrated event display

Event Display: Screenshot



org.lcsim: LCSim Event Browser


Reconstruction: Tracking

- Most US reconstruction algorithms still using cheater or MC based tracking
- Cheaters
 - MC Fast
 - Mike Ronan's cheater reco package
 - Or just use MCParticles
- Lots of good tools available in org.lcsim for real tracking algo
 - Norman Graf's track fitting and finding
 - Garfield for TPC
 - Nick Sinev's CCD reconstruction
 - Probably a lot of stuff not in org.lcsim CVS, yet (?)
 - Just need to put together into reconstruction algorithms

46 Reconstruction: Vertexing

- Jan Strube ported ZvTop.Billoir (added recently)
- Display using WIRED
- Still not integrated into reconstruction

Reconstruction: Clustering Algorithms

Clusterers

- Nearest Neighbor
- Fixed Cone
- Directed Tree
- Min Spanning Tree
- MIP
- Cheater
- contrib/other

```
1 import org.lcsim.event.EventHeader;
 2 import org.lcsim.recon.cluster.nn.NearestNeighborClusterDriver;
 import org.lcsim.recon.cluster.cheat.CheatClusterDriver;
 4 import org.lcsim.util.Driver;
  public class ClusterFinding extends Driver
          public ClusterFinding()
                  int minCells = 5;
                  add(new NearestNeighborClusterDriver(minCells));
                  add(new CheatClusterDriver());
          3
          protected void process(EventHeader event)
                  super.process(event);
18
19 }
```

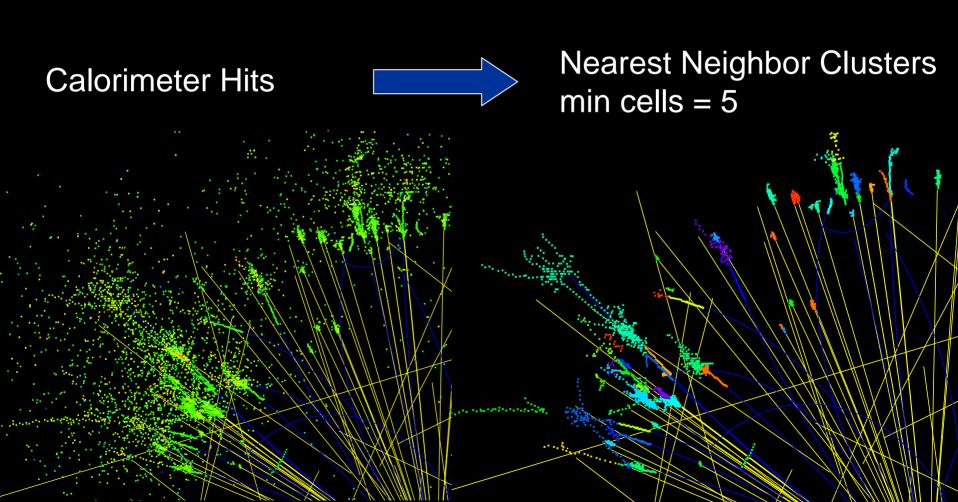
47

Pick the appropriate clusterer for your analysis

11

13

14


15 16

17

- Run in parallel to compare results
- Utilities and diagnostic plots, also
- Developed by N. Graf, R. Cassell, W. Mader, et al

Clusters are displayed automatically by org.lcsim.

Reconstruction: Complete Algorithms ⁴⁹

Lots of people working on full PFA or portions

- Steve Magill, Norman Graf, Guilherme Lima, Ron Cassell, Matt Charles, Steve Kuhlman, Lei Xia, ...
- See talk by Steve Magilf
- Calorimetry part seems to have working PFA algorithms.
- Real tracking algorithms are not included (yet).
- Many utilities and tools exist.
 - Vertex and track fitting, clustering, jet finding

Need to work on integration.