
Where are we now and what next?

Mark Thomson University of Cambridge

This Talk:

- **★** Why oh why?
- **★** Frameworks/Tools
- **★** Software status
- **★** Organisation

• Why oh why ?

- **★** Working towards detector DCR by the end of 2006!
- **★** Desire full simulation/full reconstruction detector performance studies
- **★ Simply using Tesla TDR studies would not look good**

Perhaps more importantly:

- **★** 3 out of 4 detector concepts choose high granularity calorimetry (i.e. high cost) for particle flow
- ★ NEED to be convinced that Particle Flow paradigm is correct
- ★ For Detector DCR must try to demonstrate the PFA can be made to work for current concepts
- ★ Only(?) evidence that it can be made to work are "old" TESLA studies (LC-PHSM-2003-001)
- **★ For DCR repeating/validating these studies with current detectors must be a very high priority But very little time:**
- **★** Need to get more organised...

So PFA Matters – what matters for PFA?

Everything!

e.g. Perfect Particle Flow (see P. Krstonosic Vienna ECFA meeting) e.g. e⁺e⁻ →Z →qq at 91.2 GeV

3

	Effect	σ [GeV]	σ [GeV]	σ [GeV]	σ %
	LifeCt	separate	not joined	total (% / \sqrt{E})	to total
eq	$E_{\nu} > 0$	0.84	0.84	0.84 (8.80%)	12.28
To be reviewed	$Cone < 5^{\circ}$	0.73	FORWARD REGION		9.28
To	$P_{t} < 0.36$	1.36	TRAC	KING	32.20
	$\sigma_{{\scriptscriptstyle HCAL}}$	1.40	HCAL RESOLUTION		34.12
	$\sigma_{\scriptscriptstyle ECAL}$	0.57	1.51	2.32(24.27%)	5.66
	$M_{ m neutral}$	0.53	1.60	2.38(24.90%)	4.89
	$M_{ m charged}$	0.30	1.63	2.40 (25.10%)	1.57

(assumed sub-detector resolutions: ECAL 11%/ \sqrt{E} , HCAL 50%/ \sqrt{E} +4%)

+ all mistakes made in PFA algorithm

*PFA is delicate - it needs realistic studies: simulation + tracking + clustering

2 Software FrameworkS/Tools

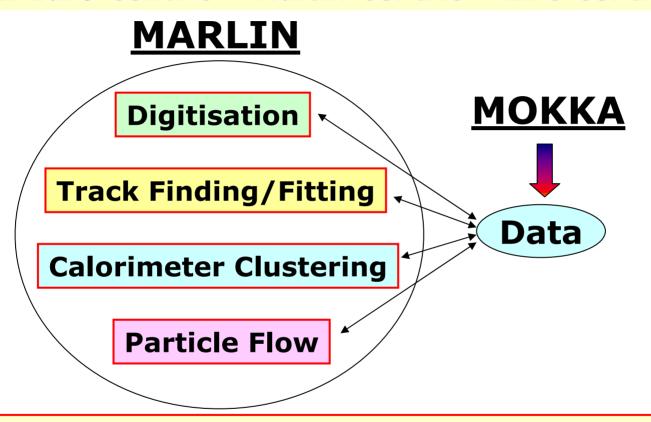
So where are we now ?

	Description	Detector	Language	IO-Format	Region		
Simdet	fast Monte Carlo	TeslaTDR	Fortran	StdHep/LCIO	EU		
SGV	fast Monte Carlo	simple Geometry, flexible	Fortran	None (LCIO)	EU		
Lelaps	fast Monte Carlo	SiD, flexible	C++	SIO, LCIO	US		
Mokka	full simulation – Geant4	TeslaTDR, LDC, flexible	C++	ASCI, LCIO	EU		
		, ,		LCIO	_		
Brahms-Sim	Geant3 – full simulation	TeslaTDR	Fortran		EU		
SLIC	full simulation – Geant4	SiD, flexible	C++	LCIO	US		
LCDG4	full simulation - Geant4	SiD, flexible	C++	SIO, LCIO	US		
Jupiter	full simulation - Geant4	JLD (GDL)	C++	Root (LCIO)	AS		
Brahms-Reco	reconstruction framework (most complete)	TeslaTDR	Fortran	LCIO	EU		
Marlin	reconstruction and analysis application framework	Flexible	C++	LCIO	EU		
hep.lcd	reconstruction framework	SiD (flexible)	Java	SIO	US		
org.lcsim	reconstruction framework (under development)	SiD (flexible)	Java	LCIO	US		
Jupiter-Satelite	reconstruction and analysis	JLD (GDL)	C++	Root	AS		
LCCD	Conditions Data Toolkit	All	C++	MySQL, LCIO	EU		
GEAR	Geometry description	Flexible	C++ (Java?)	XML	EU		
LCIO	Persistency and datamodel	All	Java, C++, Fortran	-	AS,EU,US		
JAS3/WIRED	Analysis Tool / Event Display	All	Java	xml,stdhep, heprep,LClO,	US,EU		
See talk of F.Gaede							

Fast Simulation

Full GEANT Simulation

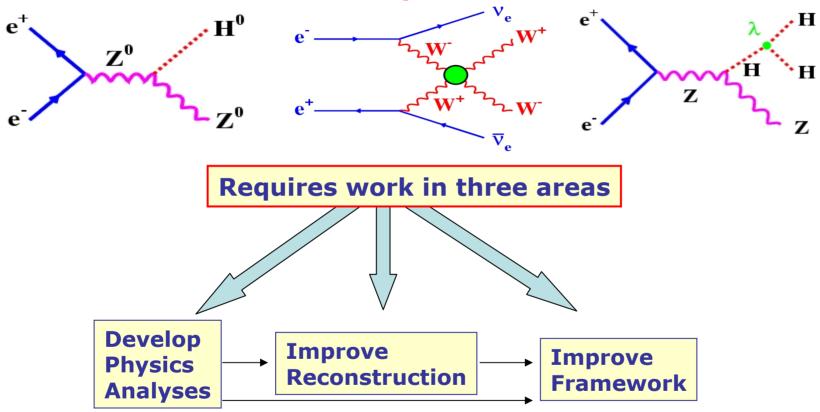
Reconstruction Framework


Geometry/Data Format+..

+reconstruction...

- Much duplication of work
- ▲ Currently Software highly tied to concepts/region
- **▲** Given the lack of resources, this is an unfortunate position
- ▲ Difficult to see this change in short-term

Euro-centric View

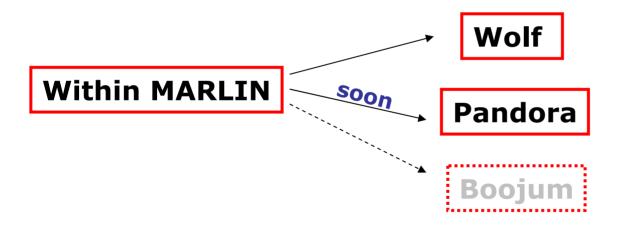

HERE: Euro-centric = Marlin-centric = LDC-centric view

- **★** A lot of code already exists complete (but imperfect) reconstruction chain
- **★** Large data samples available easy to access via Grid tools
- **★** Marlin is easy to use
- ★ People can start to develop analyses (e.g. see today's talks)

What next

* GOAL: Full Simulation Physics Studies

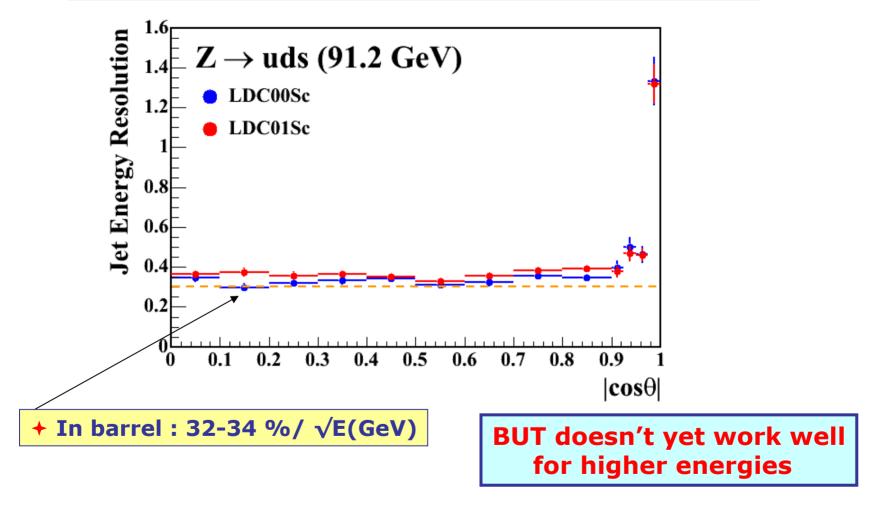
- **★** Need to attack all three areas in parallel (for DCR)
- **★** To achieve this need <u>clear commitment</u> from people/groups
- **★** Developing Physics analysis → strong feedback into reco/framework


8 Reconstruction Software Holes

★ Code available **DIGITISATION ★ Define LDC defaults ★** Sophisticated code under development - real progress **VERTEX RECO ★ Vital for many physics studies** ★ High priority to get this in Marlin **★ Promised by Summer** ★ Code available - but not ideal **★** Plenty of people working **TRACKING ★ Not much coordination!** * High priority (finding/fitting) ★ In the LDC, LCAL is "extension" of ECAL **FORWARD ★ Need Mokka sim. +Marlin reconstruction ★ Lots of INDEPENDENT work ★** Coordinate more ? ITAL to have decent PFA performance soon... **★** Very high priority

★ Progressing.....

PFA where art thou?


- **★PFA** paradigm central to GLD, LDC, SiD, concepts
 - NOT THERE YET!
 - <u>BUT:</u> Real progress being made with PFA:
 63.63 % of talks in LCWS06 software session related to PFA
 - + Many talks at this meeting
 - Progress, but some way to go.... 6 months? 1 year? Longer?

Current Status.....

Results: Z uds events Angular dependence

+ Plot resolution vs generated polar angle of qq system

PERSONAL OPINION:

On timescale of Summer 2006 will have a PFA with reasonable performance

Organisation (for discussion)

★ Opinion: within Europe (Marlin) we need to work in a more coordinated manner (e.g. GLD and SiD have regular meetings)

2.5 steps to DCR Heaven?:

1/2) Coordination?

- **★** Lots of good work but duplication/lack of communication
- **★** We need to coordinate our efforts better to achieve goals
- **★** Hard to do outside a formal "collaboration"
- **★** Not sure how best to do this....
- ★ At least should maintain a list of people working on Marlin-based software

1) Propose regular phone meetings:

- **★** Every 2(?) weeks (Marlin-centric but open to all)
- **★** Each meeting could have a special focus: PFA, Tracking, Framework, Physics studies...
- **★** Would immediately improve communication
- ★ Will set this up EXACT FORMAT ?

2) Improve involvement

- **★ Desperately** need more people working on physics studies
 - **★** The code is easy to use
 - **★** Opportunities e.g. WW/ZZ
 - **★** Get started with imperfect tools now! + feedback
- **★** Need people to make concrete commitments to work on physics/reconstruction tools within common framework

A few last random points:

- ★ How best to utilise the excellent work in US/Asia e.g. N. Graf's tracking
- ★ Meetings: in my opinion meetings such as this are useful (more focussed than larger regional meetings) How frequent - format?
- **★** Many people at this meeting Cambridge, some relatively new to the ILC framework, if someone starts working on a new topic can make a big impact! MARLIN is VERY easy to use

<u>Finally:</u> Looking back 1 year – there has been an impressive amount of progress need to ensure this continues.