LEP Tracking Status

Steve Aplin

ILC Software Tools Workshop 4 April 2006

- Break LEP tracking out of Brahms and reuse it within a MARLIN Processor
- LEPTracking provides the following:
- Track finding
- Track fitting
- Ambiguity resolver
- Full matching between subsystems

- A C++ Class is defined that describes an STL vector of structures which mimic the ZEBRA banks
- The Class also provides gets() and sets() to access the data
- In F77 statement functions are used to call C++ functions
- cfortan.h is used to facilitate these calls in a machine independent way

Geometry is defined in GEAR

- TPCDigiProcessor provides Gaussian smearing according to the specified rphi and z resolutions
- Hits which would produce merged readout signals are flagged
- This follows a geometric approach
- At present these hits are removed from the sample
- We need to reconsider Hit production in simulation for non radial tracks

- TPC Pat-Rec modified ALEPH code
- Hits sorted by radius and phi
- Chains created from Out -> In
- Search stops at half TPC radius
- Circle Fit used to fit chains, taking multiple scattering within the TPC gas into account
- Chains are then moved in picking up hits towards the inside of the TPC

- Chains which survive are passed to a Kalman filter for final fitting
- Kalman Filter developed for DELPHI
- Fast recursive algorithm implemented using the weight matrix formalism
- Taylor expansion around a reference trajectory, provided by Circle fit, is used as a starting point to obtain a linear system
- Takes into account multiple scattering and energy loss in the material described as a sequence of surfaces
- Outlier logic, able to remove measurements depending on a X² probability cut

Helix Hypothesis as in LCIO

- Ω curvature signed with charge
- d0 distance of closest approach signed
- z0 z co-ordinate of point of closest approach
- ϕ azimuthal angle of the momentum
- tan λ slope in the Sz plane dz/dS

TPC Only

d(1/p) ~ 2 x 10⁻⁴

TPC R_{outer} = 169cm , 200 pad rows

d(1/p) ~ 4 x 10⁻⁴

TPC R_{outer} = 131cm , 150 pad rows

Steve Aplin

Kink finding is not yet included

Steve Aplin

ILC Software Tools Workshop

Kink finding is not yet included

Steve Aplin

 Also problems exist with splitting of perfectly good tracks

Also problems exist with splitting of perfectly good tracks

ILC Software Tools Workshop

Low energy curlers produce major headaches

Low energy curlers produce major headaches

 New Marlin Processor "CurlKiller" produces 2D histogram and makes a cut on peaks

- No Pattern Recognition for VTX and SIT
- All hits given as individual Track Element with cov. matrix
- These are then included during track matching and fitting

Single Muons

ILC Software Tools Workshop

Summary

- Full tracking in the central region
- CurlKiller makes it stable on ttbar 500GeV
- Material description is still hard coded
- Efficiency studies need to be done soon, initial studies show > 93%, although track splitting still remains a problem
- Physics impact of low energy curlers needs to be determined