
Why Do We Build Our Software in a Different Way
Than Everybody Else ?

G.Gaycken

Laboratoire Leprince-Ringuet - École polytechnique

Cambridge, 4-6 April 2006

Outline

1 Library dependencies

2 A portable, standardised build system,
GNU autotools

3 Standardising the installation

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 2

How We Build and Install Software

Handcrafted GNU make files
→ no standard enforced.
→ functionality varies from package to package.

Each package resides in its own directory
(source code, header files, executables and libraries)
→ deviation from UNIX philosophy
→ tedious to find libraries, header files.

(Software in Europe: LCIO, Marlin, Mokka, etc.)

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 3

How We Build and Install Software

Handcrafted GNU make files
→ no standard enforced.
→ functionality varies from package to package.

Each package resides in its own directory
(source code, header files, executables and libraries)
→ deviation from UNIX philosophy
→ tedious to find libraries, header files.

(Software in Europe: LCIO, Marlin, Mokka, etc.)

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 3

Dependencies of The Libraries

Example: The LCIO based Calice software:

How to find out which libraries need to be linked ?

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

How to find out which libraries need to be linked ?

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

How to find out which libraries need to be linked ?

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

How to find out which libraries need to be linked ?

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

How to find out which libraries need to be linked ?

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

How to find out which libraries need to be linked ?

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

How to find out which libraries need to be linked ?

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

How to find out which libraries need to be linked ?

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

How to find out which libraries need to be linked ?

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

How to find out which libraries need to be linked ?

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

How to find out which libraries need to be linked ?

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

How to find out which libraries need to be linked ?

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

How to find out which libraries need to be linked ?

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Bookkeeping of Library Dependencies – pkg-config

Solution: each library provides a file which describes
preprocessor/linker flags and dependencies:

prefix=/ILC-soft
exec_prefix=${prefix}
libdir=${exec_prefix}/lib
includedir=${prefix}/include

Name: Marlin
Description: Modular Analysis and Reconstruction ...
Requires: lcio lccd jaida
Version: 0.9.5
Libs: -L${libdir} \
-Wl,-whole-archive,-lMarlin,-no-whole-archive
Cflags: -I${includedir}/marlin -DUSE_LCCD

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 5

Compiling/Linking using pkg-config

g++ -c MyMarlin.cc ‘pkg-config --cflags Marlin‘ \
-o MyMarlin.o

g++ MyMarlin.o ‘pkg-config --libs Marlin‘

pkg-config resolves dependencies. It returns all necessary preprocessor
and linker flags.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 6

Do we need portability ?
Or, do we have a monoculture ?

Is the current way of building standardised enough ?

Or should we adopt more automatised solutions ?

GNU autotools would provide a standardised, portable build system.

Do we need portability ?
Or, do we have a monoculture ?

Is the current way of building standardised enough ?

Or should we adopt more automatised solutions ?

GNU autotools would provide a standardised, portable build system.

Do we need portability ?
Or, do we have a monoculture ?

Is the current way of building standardised enough ?

Or should we adopt more automatised solutions ?

GNU autotools would provide a standardised, portable build system.

Do we need portability ?
Or, do we have a monoculture ?

Is the current way of building standardised enough ?

Or should we adopt more automatised solutions ?

GNU autotools would provide a standardised, portable build system.

GNU Autotools

Automatic configuration:using results of feature tests :
(tests use the compiler/linker)

OS and CPU,
standard conformance and features of compiler,
availability of functions/libraries,
function interfaces,
. . .

→ Portability.

Portable generation of shared/static libraries.
Standardised Makefiles.

Work with every implementation of make.
Scale from simple to complex projects.
Can install/uninstall, produce distributable source packages.
Track changes of source/headers and compile accordingly.
Include/exclude sources in/from compilation according to test
results.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 8

GNU Autotools

Automatic configuration:using results of feature tests :
(tests use the compiler/linker)

OS and CPU,
standard conformance and features of compiler,
availability of functions/libraries,
function interfaces,
. . .

→ Portability.

Portable generation of shared/static libraries.
Standardised Makefiles.

Work with every implementation of make.
Scale from simple to complex projects.
Can install/uninstall, produce distributable source packages.
Track changes of source/headers and compile accordingly.
Include/exclude sources in/from compilation according to test
results.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 8

GNU Autotools

Automatic configuration:using results of feature tests :
(tests use the compiler/linker)

OS and CPU,
standard conformance and features of compiler,
availability of functions/libraries,
function interfaces,
. . .

→ Portability.

Portable generation of shared/static libraries.
Standardised Makefiles.

Work with every implementation of make.
Scale from simple to complex projects.
Can install/uninstall, produce distributable source packages.
Track changes of source/headers and compile accordingly.
Include/exclude sources in/from compilation according to test
results.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 8

The GNU Autotools

Goal: source → libraries, executable, pkg-config file.

The GNU Autotools

Developer has to provide files which describe the configuration and
building.

The GNU Autotools

Configuration described with high level macros.
First step, collect definitions of all needed macros.

The GNU Autotools

Then, macros are expand, the configure script is created.

The GNU Autotools

configure.ac also defines possible options for the build process
(preprocessor definitions).

The GNU Autotools

Autotools use scripts to build shared/static libraries → portability.

The GNU Autotools

Makefile templates with standard build targets are create from
Makefile.am files.

The GNU Autotools

Developer has to provider template for pkg-config file. Will be filled
by configure.

The GNU Autotools

The configure script creates Makefiles, etc. from templates.
It fills in parameters specific to target system.

The GNU Autotools

Finally, make is used to compile, install etc.

The GNU Autotools

Once the Makefiles are created:
make will call autoconf, automake whenever necessary.

The GNU Autotools – From User Perspective

To build a package on an arbitrary host:

tar -xzf package-1.0.tar.gz
./configure
make
make install

Fetch package, unpack it.

Configure package for target system,

compile and

install the package in default location (/usr/local).

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 10

The GNU Autotools – From User Perspective

To build a package on an arbitrary host:

tar -xzf package-1.0.tar.gz
./configure
make
make install

Fetch package, unpack it.

Configure package for target system,

compile and

install the package in default location (/usr/local).

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 10

The GNU Autotools – From Developer Perspective

To participate in development process (or if checked out from CVS),
need to bootstrap first:
(i.e. create configure script, Makefile templates etc.)

sh ./autogen.sh

Which runs:

libtoolize
aclocal
autoconf
autoheader
automake

Then only configure and make need to be called directly.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 11

The GNU Autotools – From Developer Perspective

To participate in development process (or if checked out from CVS),
need to bootstrap first:
(i.e. create configure script, Makefile templates etc.)

sh ./autogen.sh

Which runs:

libtoolize
aclocal
autoconf
autoheader
automake

Then only configure and make need to be called directly.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 11

The GNU Autotools – From Developer Perspective

To participate in development process (or if checked out from CVS),
need to bootstrap first:
(i.e. create configure script, Makefile templates etc.)

sh ./autogen.sh

Which runs:

libtoolize
aclocal
autoconf
autoheader
automake

Then only configure and make need to be called directly.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 11

The autoconf input file - configure.ac

Tests are activated by high level macros mixed with korn shell scripts:

. . .

AC_CXX_NAMESPACES(, [config_error=yes])

if test x$config_error = xyes; then
AC_MSG_ERROR([Need compiler with namespace...])

fi

AC_CXX_HAVE_STL([have_stl=yes],[have_stl=no])
AM_CONDITIONAL(USE_STL, test x$have_stl = xyes)

. . .

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 12

Automake – Makefile,am

Simple Makefile.am to create shared/static libraries:
libpackage.so/.a and libpackage ext.so/.a

nobase_pkginclude_HEADERS=pacakge.hh

lib_LTLIBRARIES = libpackage.la \
libpackage_ext.la

libpackage_la_SOURCES = package_0.cc

if USE_STL
libpackage_la_SOURCES += package_1.cc

endif

libpackage_ext_la_SOURCES = package_ext.cc

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 13

Automake – Makefile,am

to create executables:

. . .

bin_PROGRAMS = exe

exe_LDFLAGS = libpackage.la
exe_SOURCES = main.cc

. . .

or process a subdirectory:

. . .

SUBDIRS=auxlib

. . .

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 14

Automake – Makefile.am

or to build unit tests:
(programs which are not installed to test e.g. libraries):

. . .

check_PROGRAMS = test_pacakge
test_package_LDFLAGS = libpackage.la
test_package_SOURCES = test_paclage.cc

. . .

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 15

Looks complicated - Why should I use this crap ?

Steep learning curve – But once learned:

Allow to create portable projects.

Projects are easily extendable.and maintainable.

Standardised Makefiles.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 16

Looks complicated - Why should I use this crap ?

Steep learning curve – But once learned:

Allow to create portable projects.

Projects are easily extendable.and maintainable.

Standardised Makefiles.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 16

Aren’t there less complicated alternatives ?

Alternatives, yes. Replacements for make and autotools:

ant/maven – java based.
No out of the box C, C++, F77 support.

SCons – python based.
Already mature ? Maintainable ?.

CMake.
?

But: autotools widely adopted standard:
xorg, GNOME, MySQL, CLHEP, . . .

→ good support.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 17

Caveats of automatised solutions

Automatised solutions do a poor job if libraries etc. are not installed
in default locations.

Way out:

Provide pkg-config files and collect them in one location.

Install libraries, header files in standard locations. For example:

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 18

Caveats of automatised solutions

Automatised solutions do a poor job if libraries etc. are not installed
in default locations.

Way out:

Provide pkg-config files and collect them in one location.

Install libraries, header files in standard locations. For example:

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 18

Caveats of automatised solutions

Automatised solutions do a poor job if libraries etc. are not installed
in default locations.

Way out:

Provide pkg-config files and collect them in one location.

Install libraries, header files in standard locations. For example:

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 18

Summary

I would suggest to provide pkg-config files for all libraries.
(solves library dependency problem.)

I would encourage the usage of the GNU autotools.
(Results in portable, maintainable, standardised projects.)

I think a UNIX like organisation of ILC-soft libraries and header
files would be a good idea.
(Easier to find libraries, header files, less configuration effort.)

There are many packages which depend on each other. Do we
need package managment?
(e.g. apt-get install MarlinReco or emerge MarlinReco)

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 19

Summary

I would suggest to provide pkg-config files for all libraries.
(solves library dependency problem.)

I would encourage the usage of the GNU autotools.
(Results in portable, maintainable, standardised projects.)

I think a UNIX like organisation of ILC-soft libraries and header
files would be a good idea.
(Easier to find libraries, header files, less configuration effort.)

There are many packages which depend on each other. Do we
need package managment?
(e.g. apt-get install MarlinReco or emerge MarlinReco)

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 19

Summary

I would suggest to provide pkg-config files for all libraries.
(solves library dependency problem.)

I would encourage the usage of the GNU autotools.
(Results in portable, maintainable, standardised projects.)

I think a UNIX like organisation of ILC-soft libraries and header
files would be a good idea.
(Easier to find libraries, header files, less configuration effort.)

There are many packages which depend on each other. Do we
need package managment?
(e.g. apt-get install MarlinReco or emerge MarlinReco)

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 19

Summary

I would suggest to provide pkg-config files for all libraries.
(solves library dependency problem.)

I would encourage the usage of the GNU autotools.
(Results in portable, maintainable, standardised projects.)

I think a UNIX like organisation of ILC-soft libraries and header
files would be a good idea.
(Easier to find libraries, header files, less configuration effort.)

There are many packages which depend on each other. Do we
need package managment?
(e.g. apt-get install MarlinReco or emerge MarlinReco)

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 19

	How We Build Software
	Library Dependencies
	The Problem of Library Dependencies
	pkg-config

	Autotools
	GNU Autotools
	Autotools Schema
	Autotools for Users
	Autotools for Developers
	configure example

	automake - building libraries
	automake - building executables
	automake - building unit tests
	Why use autotools
	Alternatives
	Caveats

	Summary

