G.Gaycken

Laboratoire Leprince-Ringuet - Ecole polytechnique

Cambridge, 4-6 April 2006

Outline

Library dependencies

A portable, standardised build system,
GNU autotools

Standardising the installation

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

How We Build and Install Software

m Handcrafted GNU make files
— no standard enforced.
— functionality varies from package to package.

(Software in Europe: LCIO, Marlin, Mokka, etc.)

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

How We Build and Install Software

m Handcrafted GNU make files
— no standard enforced.
— functionality varies from package to package.

m Each package resides in its own directory
(source code, header files, executables and libraries)
— deviation from UNIX philosophy
— tedious to find libraries, header files.

(Software in Europe: LCIO, Marlin, Mokka, etc.)

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

Dependencies of The Libraries

Example: The LCIO based Calice software:

Calico

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

Dependencies of The Libraries

Example: The LCIO based Calice software:

Calico

LCI0

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

Dependencies of The Libraries

Example: The LCIO based Calice software:

Calico

CLher —LCI0

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

Dependencies of The Libraries

Example: The LCIO based Calice software:

Calico

¢ T

CLHEP +——LCI0

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

Dependencies of The Libraries

Example: The LCIO based Calice software:

Calico

O£AR ? 3’%

CLHEP +——LCI0

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

Dependencies of The Libraries

Example: The LCIO based Calice software:

Calico

5 N "
GEMR T vartl,

f 4 \?
CLHEP L0100

LCCP

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

Calico

5 N "
GEMR T vartl,

f 4 \?
CLHEP L0100

LCCP

4
ConelDB

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

Calico

5 N "
GEMR T vty

f 4 \?
CLHEP L0100

LCCP

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ?

Cambridge, 4-6 April 2006

4

Dependencies of The Libraries

Example: The LCIO based Calice software:

Calico

T YN -
GE T vty
Akf' Z \?\g
CLHPHZC0R sy g
LCCD

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ?

Cambridge, 4-6 April 2006

4

Dependencies of The Libraries

Example: The LCIO based Calice software:

Calico

GEMR ?\AW
ESTIN

CLHPHZC0R sy g
%%

ConelDB 7/‘\ IDA
C ﬂy[sg'cf L’ AL

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

Calice ROOT

GEMR ?\;W
4 \?\&

CLHPHZC0R sy g
\?2

ConelDB 77‘\ DA
Qﬂf’&”ﬂ‘f VL

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

Calice ROOT

Gem ?A fifd‘p\ 7\% ﬁu)/x //5

CLHPHLC0R "y Taa FPROOT
2

ConelDB 77‘\ DA
Qﬂf’&”ﬂ‘f VL

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Dependencies of The Libraries

Example: The LCIO based Calice software:

Calice ROOT

5 21N -
GEAR{?' ’;"”ﬂl‘\?\& ﬁ,\@A //05
CLHEP - HLCI0 A s AIDA FeRONT
LCCP

GWZB oA

C /'/yls?*éi L” 70 k

How to find out which libraries need to be linked ?

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 4

Bookkeeping of Library Dependencies — pkg-config

Solution: each library provides a file which describes
preprocessor/linker flags and dependencies:

prefix=/ILC-soft
exec_prefix=${prefix}
libdir=${exec_prefix}/1ib
includedir=${prefix}/include

Name: Marlin

Description: Modular Analysis and Reconstruction ...

Requires: lcio lccd jaida

Version: 0.9.5

Libs: -L${libdir} \
-W1l,-whole-archive,-1Marlin,-no-whole-archive

Cflags: -I${includedir}/marlin -DUSE_LCCD

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

Compiling/Linking using pkg-config

g++ —-c MyMarlin.cc ‘pkg-config --cflags Marlin® \
-o MyMarlin.o

g++ MyMarlin.o ‘pkg-config --libs Marlin‘

pkg-config resolves dependencies. It returns all necessary preprocessor
and linker flags.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

6

m Do we need portability ?
Or, do we have a monoculture ?

m Do we need portability ?
Or, do we have a monoculture ?

m Is the current way of building standardised enough ?

m Do we need portability ?
Or, do we have a monoculture ?

m Is the current way of building standardised enough ?

m Or should we adopt more automatised solutions ?

m Do we need portability ?
Or, do we have a monoculture ?

m Is the current way of building standardised enough ?

m Or should we adopt more automatised solutions ?

GNU autotools would provide a standardised, portable build system.

GNU Autotools

m Automatic configuration:using results of feature tests :
(tests use the compiler/linker)
m OS and CPU,
m standard conformance and features of compiler,
m availability of functions/libraries,
m function interfaces,
=

— Portability.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 8

GNU Autotools

m Automatic configuration:using results of feature tests :
(tests use the compiler/linker)
m OS and CPU,
m standard conformance and features of compiler,
m availability of functions/libraries,
m function interfaces,
=

— Portability.
m Portable generation of shared/static libraries.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

GNU Autotools

m Automatic configuration:using results of feature tests :
(tests use the compiler/linker)
m OS and CPU,
m standard conformance and features of compiler,
m availability of functions/libraries,
m function interfaces,
=

— Portability.
m Portable generation of shared/static libraries.
m Standardised Makefiles.

m Work with every implementation of make.

Scale from simple to complex projects.

Can install/uninstall, produce distributable source packages.
Track changes of source/headers and compile accordingly.
Include/exclude sources in/from compilation according to test
results.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

The GNU Autotools

Development Compilation

l:l Supplied by user

Libraries
Executables

l:l System tools

Created by
autotools

{} Scripts

Installation

header files

Source code

Binaries

pEE

Goal: source — libraries, executable, pkg-config file.

The GNU Autotools

Development Compilation

configure.ac

Makfile.am

Source code

pEE

l:l Supplied by user

Libraries
Executables

l:l System tools

Created by
autotools

{} Scripts

Installation

package.pc
header files

Binaries

Developer has to provide files which describe the configuration and

building.

The GNU Autotools

Development Compilation

aclocal m4 macros

calice-userlib.m4

l:l Supplied by user

Libraries
Executables

|:| System tools

Created by
autotools

{:} Scripts

aclocal

aclocal.m4

9.

configure.ac

Installation

Makfile.am

Source code header files

|

Binaries

Configuration described with high level macros.
First step, collect definitions of all needed macros.

Development

aclocal m4 macros
calice-userlib.m4

configure.ac

Makfile.am

aclocal.m4

The GNU Autotools

Configuration

'} configure

Compilation

Source code

[

l:l Supplied by user

Libraries
Executables

|:| System tools

Created by
autotools

{:} Scripts

Installation

header files

Binaries

Then, macros are expand, the configure script is created.

The GNU Autotools

Development Compilation

aclocal m4 macros

l:l Supplied by user

o0 Libraries
calice-userlib.m4 Configuration Executables
[e o
Created by
autotools

aclocal.m4
T oo

{:} autoheader }—+ config.h.in ‘
Installation

configure.ac

{:} Scripts

Makfile.am

|

pacakge.exe

configure.ac also defines possible options for the build process
(preprocessor definitions).

The GNU Autotools

Development Compilation

aclocal m4 macros
calice-userlib.m4

't aclocal
aclocal.m4
{} autoconf

{:} autoheader

Configuration

configure.ac

}—+ config.h.in ‘

Makfile.am

Source code

l:l Supplied by user

Libraries
Executables

|:| System tools

Created by
autotools

{:} Scripts

[

y [ibtool |
Pz e

¢ build scripts

Installation

header files

Binaries

Autotools use scripts to build shared/static libraries — portability.

The GNU Autotools

Development Compilation

aclocal m4 macros

l:l Supplied by user

- a Libraries
Configuration Executables

calice-userlib.m4

[e o

Created by
{:} Scripts

{:} autoheader }—+ config.h.in ‘
Installation

I} automake
automdte.cache

configure.ac

Makfile.am Makefile.in

w ~ ¢ build scripts
7 m Binaries

|
{1 ibtoot |
g o] — [sweom]

Makefile templates with standard build targets are create from
Makefile.amn files.

pacakge.exe

Development

aclocal m4 macros

calice-userlib.m4

configure.ac

aclocal.m4

The GNU Autotools

Compilation

Configuration

'} configure

{:} autoheader

}—+ config.h.in ‘

Makfile.am

I} automake

Makefile.in

Q libtoolize \—/

L‘ automdte.cache

‘ package.pc.in ‘

Source code

[

l:l Supplied by user

Libraries
Executables

|:| System tools

Created by
autotools

{:} Scripts

¢ build scripts

4

v btoo

Installation

header files

Binaries

Developer has to provider template for pkg-config file. Will be filled
by configure.

Development

aclocal m4 macros

calice-userlib.m4

configure.ac

aclocal.m4

The GNU Autotools

Compilation

Configuration

'} configure

{:} autoheader

}—+ config.h.in ‘

configure results

“

config.status

config.h

Makfile.am

I} automake

Makefile.in

L‘ automdte.cache

‘ package.pc.in

Source code

|

Makefile

l:l Supplied by user

Libraries
Executables

|:| System tools

Created by
autotools

¢ build scripts

i

[ibtoot |
e Jo—— [_on |

The configure script creates Makefiles, etc. from templates.
It fills in parameters specific to target system.

Installation

package.pc

Binaries

m———

pacakge.exe

The GNU Autotools

Development Compilation

aclocal m4 macros

calice-userlib.m4 Configuration

configure results

[]

config.h

{:} autoheader }—+ config.h.in ‘
I} automake

L‘ automdte.cache

Makefile.in

Makfile.am

Source code

l:l Supplied by user

Libraries
Executables

|:| System tools

Created by
autotools

{:} Scripts

[y

Q libtoolize \—/

Y
/

=L

Installation

package.pc
header files

Binaries

W

e |

Finally, make is used to compile, install etc.

The GNU Autotools

Development Compilation

aclocal m4 macros
calice-userlib.m4
't aclocal

[l gt

{:} autoheader

automdte.cache

Configuration

configure results

[]

'} configure

}—+ config.h.in ‘
Makefile.in

config.h

Makefile

Makfile.am

l:l Supplied by user

Libraries
Executables

l:l System tools

Created by
autotools

{:} Scripts

—»

Installation

package.pc
header files

Binaries

Source code
w build scripts
e
{1 ibtoot |
[wooe oo]

Once the Makefiles are created:
make will call autoconf, automake whenever necessary.

The GNU Autotools — From User Perspective

To build a package on an arbitrary host:

tar -xzf package-1.0.tar.gz
./configure

make

make install

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 10

The GNU Autotools — From User Perspective

To build a package on an arbitrary host:

tar -xzf package-1.0.tar.gz
./configure

make

make install

m Fetch package, unpack it.

m Configure package for target system,
m compile and
[

install the package in default location (/usr/local).

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

10

The GNU Autotools — From Developer Perspective

To participate in development process (or if checked out from CVS),
need to bootstrap first:
(i.e. create configure script, Makefile templates etc.)

sh ./autogen.sh

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 11

The GNU Autotools — From Developer Perspective

To participate in development process (or if checked out from CVS),
need to bootstrap first:
(i.e. create configure script, Makefile templates etc.)

sh ./autogen.sh

Which runs:

libtoolize
aclocal
autoconf
autoheader
automake

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 11

The GNU Autotools — From Developer Perspective

To participate in development process (or if checked out from CVS),
need to bootstrap first:
(i.e. create configure script, Makefile templates etc.)

sh ./autogen.sh

Which runs:

libtoolize
aclocal
autoconf
autoheader
automake

Then only configure and make need to be called directly.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 11

The autoconf input file - configure.ac

Tests are activated by high level macros mixed with korn shell scripts:

AC_CXX_NAMESPACES(, [config_error=yes])

if test x$config_error = xyes; then
AC_MSG_ERROR([Need compiler with namespace...])

fi

AC_CXX_HAVE_STL([have_stl=yes], [have_stl=no])
AM_CONDITIONAL(USE_STL, test x$have_stl = xyes)

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 12

Automake — Makefile,am

Simple Makefile.am to create shared/static libraries:
libpackage.so/.a and libpackage ext.so/.a

nobase_pkginclude_HEADERS=pacakge.hh

1ib_LTLIBRARIES = libpackage.la \
libpackage_ext.la

libpackage_la_SOURCES = package_0.cc
if USE_STL
libpackage_la_SOURCES += package_1.cc

endif

libpackage_ext_la_SOURCES = package_ext.cc

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

13

Automake — Makefile,am

to create executables

bin_PROGRAMS = exe

exe_LDFLAGS
exe_SOURCES

libpackage.la

main.cc

or process a subdirectory:

SUBDIRS=auxlib

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

14

Automake — Makefile.am

or to build unit tests:
(programs which are not installed to test e.g. libraries):

check_PROGRAMS = test_pacakge
test_package_LDFLAGS = libpackage.la
test_package_SOURCES = test_paclage.cc

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

15

Looks complicated - Why should | use this crap ?

Steep learning curve — But once learned:

m Allow to create portable projects.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 16

Looks complicated - Why should | use this crap ?

Steep learning curve — But once learned:
m Allow to create portable projects.
m Projects are easily extendable.and maintainable.
m Standardised Makefiles.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

16

Aren’t there less complicated alternatives ?

Alternatives, yes. Replacements for make and autotools:

m ant/maven — java based.

No out of the box C, C+-+, F77 support.
m SCons — python based.

Already mature 7 Maintainable 7.
m CMake.

?

But: autotools widely adopted standard:
xorg, GNOME, MySQL, CLHEP, ...
— good support.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 17

Caveats of automatised solutions

Automatised solutions do a poor job if libraries etc. are not installed
in default locations.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 18

Caveats of automatised solutions

Automatised solutions do a poor job if libraries etc. are not installed
in default locations.

Way out:

m Provide pkg-config files and collect them in one location.

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

18

Caveats of automatised solutions

Automatised solutions do a poor job if libraries etc. are not installed
in default locations.

Way out:
m Provide pkg-config files and collect them in one location.

m Install libraries, header files in standard locations. For example:

ILC-soft
lib include src

\ = \ =
o o

pkg-config "-EE. rﬂ!ﬂ

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

18

m | would suggest to provide pkg-config files for all libraries.
(solves library dependency problem.)

m | would encourage the usage of the GNU autotools.

Summary

m | would suggest to provide pkg-config files for all libraries.
(solves library dependency problem.)

m | would encourage the usage of the GNU autotools.
(Results in portable, maintainable, standardised projects.)

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006 19

Summary

m | would suggest to provide pkg-config files for all libraries.
(solves library dependency problem.)

m | would encourage the usage of the GNU autotools.
(Results in portable, maintainable, standardised projects.)

m | think a UNIX like organisation of ILC-soft libraries and header
files would be a good idea.
(Easier to find libraries, header files, less configuration effort.)

G.Gaycken Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

19

Summary

G.Gaycken

m | would suggest to provide pkg-config files for all libraries.
(solves library dependency problem.)

m | would encourage the usage of the GNU autotools.
(Results in portable, maintainable, standardised projects.)

m | think a UNIX like organisation of ILC-soft libraries and header
files would be a good idea.
(Easier to find libraries, header files, less configuration effort.)

m There are many packages which depend on each other. Do we
need package managment?
(e.g. apt-get install MarlinReco or emerge MarlinReco)

Why Do We Build Our Software in a Different Way Than Everybody Else ? Cambridge, 4-6 April 2006

19

	How We Build Software
	Library Dependencies
	The Problem of Library Dependencies
	pkg-config

	Autotools
	GNU Autotools
	Autotools Schema
	Autotools for Users
	Autotools for Developers
	configure example

	automake - building libraries
	automake - building executables
	automake - building unit tests
	Why use autotools
	Alternatives
	Caveats

	Summary

