Simulation of the forward region

Ronen Ingbir

Tel Aviv University HEP Experimental Group

Cambridge ILC software tools meeting

FCAL simulation tools

Detector simulation: Geant-3, Geant-4 (and Mokka) next step: G3/G4 comparison

Physics: BHWIDE, CIRCE, GUNIEA-PIG, WHIZARD

High statistics / Fast detector simulation

Electronics simulation: noise, dead cells, digitization (Geant-3 + Fortran code)

BeamCal

Detection of electrons/photons at low angle Shielding the inner detector Beam diagnostics from beamstrahlung electrons/positron pairs.

Beam diagnostics : BS Pairs

- Observables (examples):
 - total energy
 - first radial moment
 - left/right, up/down,
 - forward/backward asymmetries

detector: realistic segmentation, ideal resolution, bunch by bunch resolution

Solved by matrix inversion (Moore-Penrose Inverse)

1st order Taylor-Exp.

Being tested also for the 20mrad case

llaboration

Particle identification in the BeamCal

SUSY analysis is done by Z.Zang(LAL)

The Physics: SUSY particles production Signature: missing energy

The Background: two photons event Signature: missing energy (if electrons are not tagged)

Excellent electron identification is needed down to as small angle as possible

Vladimir Drugakov NC PHEP, Minsk

Electron detection in the BeamCal

Electron detection for different beam parameters

Distribution of BeamStrahlung pairs

Christian Grah, DESY-Zuethen

Headon

20mrad crossing angle and DID field

BeamCal Geant4 Simulation

- Need precise simulation for showering/realistic bfield map. Includes:
 - flexible geometry (beam crossing angle, layer thickness, variable segmentation, calorimeter tilt)
 - simplified DiD/antiDiD magnetic field
 - input GP generated e+e- pairs
 - output root tree with energy distribution in segments
 - 1 BX ~ 200min @ 2.4 GHz CPU

Shower visualization

Tel Aviv University HEP Experimental Group

A.Sapronov

B field Map

Energy deposited in the sensors of BeamCal.

LumiCal

Precise measurement of the Iuminosity by using Bhabha events Extend coverage of the ILC detector

Counting Bhabha events

Four-lepton processes

M.Pandurović / I. Božović-Jelisavčić, Belgrade

Simulation of $e^+e^- \rightarrow e^+e^- |^+|^- (|=e, \mu, \tau)$: **WHIZARD** Bhabha scattering: BHLUMI Background signal Detector: Geant-3 Y [CM] Background 5000 1000 -20 -10 20 2000 x [cm] x [cm] 1750 800 LUMICAL LUMICAL 1500 [CM] BEAMCAL BEAMCAL 1250 600 1000 \succ 400 750 500 200 250 0 0.5 1 1.5 2 2.5 3 0 25 50 75 100 125 150 175 200 225 250 3.5 4 4.5 -20 -10 -20 20 x [cm] x[°][cm] θ [deg] Energy [Gev] Tel Aviv University laboration Cambridge2006 cision design HEP Experimental Group

Strip design - signal digitization

Bogdan Pawlik, Cracow

		analog	8-bit ADC
σ(θ)	[rad]	(3.11±0.01)×10 ⁻⁵	(3.07±0.01)×10 ⁻⁵
Δθ/θ		(2.1±0.3)×10 ⁻⁵	(2.3±0.3)×10⁻⁵
σ(φ)	[rad]	(1.4±0.1)×10 ⁻³	(1.4±0.1)×10 ⁻³

zLx

Fast Simulation

Luminosity precision determination

Based on BHWIDE

- N1: Reconstructed and generated in acceptance region.
- N₂ : Generated in acceptance region but reconstructed outside.
- N₃ : Generated outside acceptance region but reconstructed inside.

$$\frac{\Delta L}{L} = \frac{\Delta N}{N} = \frac{N_{\text{rec}} - N_{gen}}{N_{gen}} = \frac{N_3 - N_2}{N_1 + N_2}$$

$$= \frac{\sqrt{(N_3 - N_2)^2 \sigma_{N_1}^2 + (N_1 + N_3)^2 \sigma_{N_2}^2 + (N_1 + N_2)^2}}{\sqrt{(N_3 - N_2)^2 \sigma_{N_1}^2 + (N_1 + N_3)^2 \sigma_{N_2}^2 + (N_1 + N_2)^2}}$$

Tel Aviv University HEP Experimental Group

Fast detector simulation – bias

Fast detector simulation – resolution

Outgoing beam \rightarrow flat azimuthal distribution

Present Understanding

