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Main Linac Design
• BCD distilled from Snowmass Working Group 

recommendations.
– WG5 for the cavity package and cryomodule

– WG2 for the rf system and cryomodule

• Major differences from 2001 Tesla TDR 500 GeV Design.
– Higher gradient (31.5 MV/m instead of 23.4 MV/m) for cost 

savings.

– Two tunnels (service and beam) instead of one for improved 

availability.

• GDE Linac Area Group is continuing to evolve design.
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ILC Linac RF Unit (1 of ~ 600)

Gradient = 31.5 MV/m
Bunch Charge = 2e10 e
Rep Rate = 5 Hz
# of Bunches = 2967
Bunch Spacing = 337 ns 
Beam Current = 9.5 mA
Input Power  = 311 kW
Fill Time = 565 μs
Train Length = 1000 μs

(8 Cavities per Cryomodule)



4* TPC is for 500 GeV machine in US Options Study.
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‣ For ILC, would accept only ‘vertically’ tested cavities (using CW rf without high 

power couplers) that achieve gradients  > 35 MV/m and Q > 8e9 (discard or 

reprocess rejects).

‣ When installed in 8 cavity cryomodules, expect stable operation at an average 

gradient of 31.5 MV/m and Q = 1e10 (rf system designed for 35 MV/m).

‣ Derating due to desire for overhead from quench limit, lower installed 

performance and limitations from using a common rf source.

‣ For a 1 TeV upgrade, expect average gradient = 36 MV/m, Q = 1e10 for new 

cavities (the TDR 800 GeV design assumed 35 MV/m and Q > 5e9).

1.3 GHz 
TESLA
Cavities
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Achieved Gradients in Single and 9-Cell Cavities
• In recent years, single-cell cavity gradients approached fundamental limit:    

Bc * (Grad / Bsurface) ~ 1800/41.5 ~ 43 MV/m for Tesla-shape cavities.
• During past 2.5 years, DESY has produced 6 fully-dressed cavities with  

Gradients > 35 MV/m and Q > 8e9. Yield for such cavities < 30%.

Test Results for Dressed-Cavities that will be 
used in a ’35 MV/m’ Cryomodule
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Achieved Gradients in Tesla Test Facility (TTF) 
8-Cavity Cryomodules 
(Cavities not Electro-Polished)
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Diamonds and Error Bars = Range of Gradients Achieved in 
Individual CW Cavity Tests.
☺ = Average Gradient Achieved in Cryomodule
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High Gradient R&D: Low Loss (LL) and Re-
Entrant (RE) Cells with a Lower Bpeak/Eacc Ratio
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Fabricated 
at Cornell

Single Cell Results: Eacc = 47 - 52 MV/m

/Ichiro
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CEBAF  Single cell Chinese Large Grain 
Q0 vs. Eacc
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Test#5a,after 1250C,3hrs,in situ baked

Test #2,no bake

Test#5,after 1250C,3 hrs, no bake Test #2/5/5a

Quench @ 36.6 MV/m

BCP + 120C Baking

Studies also underway using single or 
large grain Nb – could eliminate need 

for Electro-Polishing (EP)
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Tuning the Cavities
• Both slow (500 kHz over minutes) and fast (2.5 kHz 

during the 1.6 ms pulse) tuning required – achieve 
by compressing the cavity (~ 1 micron per 300 Hz).

• Want tuners located away from cavity ends to 
minimize cavity spacing.

• ‘Blade Tuner’ shown below. To date, have not 
achieved more than ~1kHz range of fast tuning. 
Final design for BCD not yet chosen.



12

C
oa

xi
al

 P
ow

er
 C

ou
pl

er

Input
Power

Powering the Cavities
• Power coupler design complicated by need for tunablity (Qext), 

windows and bellows.
• Baseline TTF3 design processed to 1 MW and tested up to 600 kW for 

35 MV/m operation (1000 hours): long term reliability for required 
operation at 350 kW not known.
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RF Fill Dynamics
• Adjust Qext to match cavity impedance (R/Qo * Qext) to the beam 

impedance (Gradient / Current) so zero reflected power during fill. 
• For ILC, Qext = 4e6 so cavity BW = 325 Hz (ΔL = 1 micron).
• Need to achieve < 0.1% energy gain uniformity with LLRF system

– Feedback to maintain constant ‘sum of fields’ in 24 cavities
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RF Distribution Math
(for 35 MV/m Max Operation)

35 MV/m * 9.5 mA * 1.038 m = 345 kW  (Cavity Input Power)
× 24 Cavities
× 1/.93   (Distribution Losses)
× 1/.89   (Tuning Overhead)
═ 10.0 MW

10 MW Klystron
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ILC Linac RF Unit (1 of ~ 600)

Gradient = 31.5 MV/m
Bunch Charge = 2e10 e
Rep Rate = 5 Hz
# of Bunches = 2967
Bunch Spacing = 337 ns 
Beam Current = 9.5 mA
Input Power  = 311 kW
Fill Time = 565 μs
Train Length = 1000 μs

(8 Cavities per Cryomodule)
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Modulators
• Baseline: Pulse Transformer

– 10 units have been built over 10 years, 3 by FNAL and 7 by industry.

– 8 modulators in operation – no major reliability problems (DESY 
continuing to work with industry on improvements).

– FNAL working on a more cost efficient and compact design, SLAC 
building new dual IGBT switch.

• Alternative: Marx Generator
– Solid state, 1/n redundant modular design for inherent high 

availability, reliability.

– Highly repetitive IGBT modules (90,000) cheap to manufacture.

– Eliminating transformer saves size, weight and cost, improves energy 
efficiency.
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Modulators (115 kV, 135 A, 1.5 ms, 5 Hz)

Pulse Transformer Style

(~ 2 m Long)

To generate pulse, an array of capacitors 
is slowly charged in parallel and then
discharged in series using IGBT switches.
Will test full prototype in 2006
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Modulator Unit 1 vs. 600 Unit Avg.  
Production Cost Estimates
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Other Modulator R&D
• Three Marx SBIR Phase I proposals awarded in US.

• DTI Direct Switch due at end of 2006 for evaluation at 
SLAC.

• SNS High Voltage Converter Modulator being operated, 
optimized, evaluated at SLAC L-Band Test Facility.

5 m
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Low Level RF
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Klystrons

Thales CPI
Toshiba

Baseline: 10 MW Multi-Beam Klystrons (MBKs) developed by 
three tube companies in collaboration with DESY
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Status of the 10 MW MBKs
• Thales: Four tubes produced, gun arcing problem occured and seemed 

to be corrected in last two tubes after fixes applied (met spec). However, 
tubes recently developed other arcing problems above 8 MW. Thales to 
build two more without changes and two with changes after problem is 
better diagnosed.

• CPI: One tube built and factory tested to 10 MW at short pulse. At DESY 
with full pulse testing, it developed vacuum leak after 8.3 MW achieved –
has been repaired and will be tested again.

• Toshiba: One tube built and achieved operation spec but developed 
arcing problems above 8 MW – being shipped to DESY for further 
evaluation.

• These are vertically mounted tubes – DESY will soon ask for bids on 
horizontally mounted tubes for XFEL (also needed for ILC).
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Alternative Tube Designs

10 MW Sheet Beam
Klystron (SBK)
Parameters similar to

10 MW MBK

Low Voltage
10 MW MBK

Voltage 65 kV
Current 238A
More beams

Perhaps use a Direct 
Switch Modulator

5 MW Inductive Output 
Tube (IOT)

Drive

O
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t

IOT

Klystron

SLAC CPI KEK
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Klystron Summary
• The 10 MW MBK is the baseline choice – continue to 

support tube companies to make them robust (DESY needs 
35 for XFEL although will run at 5 MW).

• SLAC funding design of a 10 MW sheet-beam klystron (will 
take several years to develop).

• Backup 1: Thales 2104C 5 MW tube used at DESY and 
FNAL for testing – it appear reliable (in service for 30 years) 
but has lower effiency compared to MBKs (42% vs 65%).

• Backup 2: With increased DOE funding next year, propose 
to contract tube companies to develop high efficiency, 
single-beam, 5 MW klystron.
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RF Distribution
Baseline choice is the 
waveguide system used at 
TTF, which includes off-
the-shelf couplers, 
circulators and 3-stub 
tuners (phase control).
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Need more compact design
(Each Cavity Fed 350 kW, 1.5 msec Pulses at 5 Hz)

Two of ~ 16,000 Feeds
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Baseline

Alternative Design with No Circulators

And should consider simplifications
(circulators are ~ 1/3 of cost)
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Alternative Waveguide Distribution 
Schemes Being Considered by DESY
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Cold time 
[months]

Installation 
date

TTF Module

16

19
19
19

30
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35

44

12
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50

Feb 04M2*

Apr 03
M3*
M4
M5

Jun 02M1*
MSS

Jun 99M3

Sep 98M2

Jan 98M1 rep.

Mar 97M1

Oct 96CryoCap

Cryomodules
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Cryomodule Design
Relative to the TTF cryomodules

– Continue with 8 cavities per cryomodule based on experience and 
minimal cost savings if number increased (12 in TDR).

– Move quad / corrector / bpm package to center (from end) to 
improve stability.

– Increase some of cryogenic pipe sizes (similar to that proposed for 
the XFEL).

– Decrease cavity separation from 344 mm to 283 mm as proposed 
in the TDR.
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Beam-Related Design Issues
• Optics / Tolerances / Operation similar to that in TDR:

– One quad per rf unit (three, 8-cavity cryomodules). 
– Few hundred micron installation tolerances for cavity, quad and BPM 

(demonstrated with TTF cryomodules).
– Cavity BPM resolution of a few μm (should be achievable).
– Use quad shunting and DFS tuning algorithms for dispersion control 

(need to better understanding systematic effects).
– Assume beamline will follow Earth’s curvature.
– XFEL will serve as a benchmark although emittance much larger.

• Alternatives for cost savings.
– Larger quad spacing at high energy end of the linac where wake and 

dispersion effects smaller.
– Halve quad and bpm aperture to allow superferric quad and higher

resolution BPMs (increases wakes by 10%).
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Quad / Corrector / BPM Package

TDR

ILC 
Proposal

887 mm 

77

66
666 mm

78

B
PM

Quad and
Correctors
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Alternative Quad Location

Cavity CavityQuad

CavityCavity Quad

Alternative

TTF
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TESLA cryogenic unit

Assume static heat leaks based 
on TTF measurements instead of 
the smaller values assumed in 
the TDR

Cryogenic System To Cryoplant
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Cryoplant Layout
For ILC 500, require 57 MW of AC power for Cryoplants
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For baseline, developing deep underground (~100 m) 
layout with 4-5 m diameter tunnels spaced by 5 m.

Tunnel Layout
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Summary
• Basic linac design complete: converging on details 

– Tradeoffs of operability, availability and cost.

• Major cost and technical risks
– Producing cryomodules that meet design gradient at a reasonable 

cost (cost model still in development, XFEL will provide a reference, 
and will get new industry-based estimates).

– Producing a robust 10 MW klystron.

• Potential Cost Savings
– Adopt Marx Modulator
– Use simpler rf distribution scheme
– Have one tunnel although ‘the additional cost is marginal when 

considering the necessary overhead and equipment improvements 
to comply with reliability and safety issues.’

– Reduce cavity aperture to 60 mm for 21% reduction in dynamic 
cryo-loading and 16% reduction in cavity fill time.


