

RDR Overview Organization, Schedule, Approach and Goals

Barry Barish GDE Caltech

- Reorganized the GDE toward Design / Cost Effort
- A global effort to design / cost the ILC is underway and working

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- Configuration Control; International Costing; Industrialization; Siting
- A sound design must be established with convincing and affordable costing.
- Review and guidance for the Global R&D program to demonstrate the ILC, improve over the baseline and reduce costs.

Change Control Board (CCB)

Nobu Toge (chair) Asia

Markiewicz	US
Mishra	US
Funk	US
Kubo	Asia
Kuriki	Asia
Pagani	EU
Blair	EU
Schulte	EU

Design Cost Board (DCB)

	Peter Garbincius (chair)	US	
Phin	ney	US	
Pate	rson	US	
Kep	hart	US	
Eno	moto	Asia	a
Shid	lara	Asia	a
Teru	inuma	Asia	a
Bial	owons	EU	
Dela	haye	EU	
Mue	ller	EU	

- The Design / Cost Board will be responsible for assessing and providing guidance for the overall RDR design effort program. The DCB initial goals will be to propose the overall structure and content for the RDR document to be developed by the end of 2006. It also will provide early guidance required to enable the design / cost effort to get fully underway by the time of the Bangalore GDE meeting.
- The DCB will set goals and milestones for producing the RDR, conduct design reviews and provide guidance and assessments of the RDR effort. The DCB will report to the Director and EC regularly as the design / cost effort progresses, reporting on early evaluations of costs, problems and changes needed in the BCD, etc.

Global R&D Board (RDB)

Bill Willis (chair) US

Padamsee	US
Himel	US
Wolski	US
Hayano	Asia
Higo	Asia
Elsen	EU
Lilje	EU
Garvey	EU
Damerell	EU

Global R&D Board (RDB)

- The Global R&D Board will be responsible for assessing and providing guidance for the overall R&D program. The RDB will suggest priorities for the research facilities and R&D supporting the baseline, the R&D on alternatives to the baseline and selective R&D that could further the field in the longer term. The mission will also include global assessments and recommended priorities for the detector R&D program and evaluate the balance between accelerator and detector R&D.
- The RDB will develop a proposal driven program, structured in the sense of defined goals, and milestones, and resources evaluated on a common basis to allow comparison across different regions and national funding systems. It will conduct reviews and identify gaps in coverage of topics, resource or technical issues, duplications, and other concerns..

ilr

Approach to ILC R&D Program

- Proposal-driven R&D in support of the baseline design.
 - Technical developments, demonstration experiments, industrialization, etc.
- Proposal-driven R&D in support of alternatives to the baseline
 - Proposals for potential improvements to the baseline, resources required, time scale, etc.
- Develop a prioritized DETECTOR R&D program aimed at technical developments needed to reach combined design performance goals

How and when to involve industry?

- Large Scale Project Characterization
 - Large Project Management
 - Precision Engineering
 - International Coordination
 - Costing

IIL

- Industrialization
 - Civil Construction & Infrastructure
 - Cryogenics
 - Superconducting RF structures, couplers, etc
 - Electronics and Control Systems
 - Large Scale Computing

- RDR Management Group (Walker, Chair)
 - Guides the design/cost efforts on day by day basis
 - Composition Accelerator Leaders (Walker, Raubenheimer, Yokoya); Cost Engineers (Shidara, Garbincius, Bialowons); Integration Scientist (Paterson)
- Coordinate both ILC design work and costing
- Reviews are to be conducted by Design Cost Board
- First Costing by Vancouver to have time for cost reductions by value engineering, scope options ... Walker

RDR Matrix	e- source	e+ source	Damping Rings	RTML	Main Lina c	BDS
Vacuum systems	x	X	X	X	X	X
Warm magnet systems	x	X	X	x	(X)	X
Cryomodule	x	X	(X)	X	X	(X)
Cavity Package	x	X	(X)	X	X	(X)
RF Power	x	X	(X)	X	X	(X)
Cryogenics	x	x	X	X	X	X
Accelerator Physics	x	X	x	X	X	X
Operations & Reliability	x	X	X	X	X	X
Instrumentation	x	X	X	X	X	X
Controls	x	X	X	X	X	X
Systems integration	x	X	x	X	X	X
CF&S	x	X	x	X	X	Walker
Cost	x	X	X	X	X	X

ILC Design

Almost complete for major items and cost drivers

ir iit

Global Design Effort

Electron Cloud

- Ecloud: Threshold of electron cloud, 1.4x10¹¹ m⁻³.
- Ion: Feedback system can suppress for 650 MHz (3ns spacing),
- number of bunch in a train 45, and gap between trains 45ns..

Global Design Effort

- 500 GeV BCD machine + "essentials" for 1 TeV
- Follow ITER "Value" & CERN "CORE" model for **International Projects**
 - Provides basic agreed to costs [common "value" + inhouse labor (man-hr)]
- RDR will provide information for translation into any country's cost estimating metric, e.g. Basis of Estimate => contingency estimate, in-house labor, G&A, escalation, R&D, pre-construction, commissioning, etc.
- Assumes a 7 year construction phase

Garbincius

ilr iit

- Based on a call for world-wide tender: lowest reasonable price for required quality
- Classes of items in cost estimate:
 - Site-Specific (separate estimates for each site)
 - Conventional global capability (single world est.)
 High Tech cavities, cryomodules, regional estimates
- Cost Engineers will determine how to combine and present multiple estimates
- WBS ; WBS Dictionary; Costing Guidelines are mature enough to begin the cost estimating

WBS Level of Detail - Cryogenics

	01	perce	ntage of to	tal materials cost for L	JSLCTOS 5	00 GeV Cold o	ption			
	%	these	percentages for USLCTOS are somewhat sensitive,							
	they are listed just to give idea of level of detail that has been attained									
	WB_6feb_PG_8feb (Follows USLCTOS)			This is wh	This is what is on the web, the items 1.8.3.1.1.i					
	1.8.3 Cryogenic Plant and Distribution			were omitted. The green numbers on left are			are			
	4.08	1.8.3.	1 Cryogeni	ic Plants	percentage	e 4.08% of tota	I USLCTOS 500	cold M&S		
\longrightarrow	3.27		1.8.3 1.1 0	Cryo Refrigeration Unit	(includes c	ryo distribution	, but not civil uti	lities)		
LHC rofrig	This la	<mark>yer w</mark>	vas r ot ind	<mark>cluded - consider ad</mark>	ding this la	ayer to increa	se sensitivity			
		1.12		1.8.3.1.1.1 Cryo Col	d Boxes					
single units —		0.68		1.8.3.1.1.2 Cryo Wa	rm Compre	ssor System				
		0.12		1.8.3.1.1.3 Cryo Col	d Compress	sor System				
		0.11		1.8.3.1.1.4 Cryo Pur	ification System	stem				
		0.13		1.8.3.1.1.5 Cryo Ref	rigeration S	ystem Controls				
		0.10		1.8.3.1.1.6 Cryo Liqu	uid Helium S	Storage				
		0.17		1.8.3.1.1.7 Cryo Ver	tical Transfe	er Line				
		0.16		1.8.3.1.1.8 Cryo Dist	ribution Bo	xes 1,2,8				a.
		0.11		1.8.3.1.1.9 Cryo Dist	ribution Bo	xes 3,6,7				
		0.16		1.8.3.1.1.10 Cryo W	arm He Gas	s Header				
		0.09		1.8.3.1.1.11 Cryo Va	icuum Barri	ers				
		0.19		1.8.3.1.1.12 Cryo Sy	stem Instal	llation Contract	S			
		0.04		1.8.3.1.1.13 Cryo Mi	scellaneous	S				
		0.05		1.8.3.1.1.14 Cryo Fe	ed Boxes					
	0.05	0.04	10010	1.8.3.1.1.15 Cryo Er	la Boxes					
	0.25		1.0.3.1.2	Cryo Cooling Towers	torago					
	0.04		1.0.3.1.3	Cryo Holium Cas (init	totage	chould thic k	o operating n	ot construe	otion?	
	0.04		18315	Civo Vacuum Barrier	liai chaige)		be operating, n			
	0.00		18316	Cryo Feed Boxes						
	0.01		1.8.3.1.7	Cryo End Boxes						
	0.17		1.8.3.1.8	Crvo Load Controls						
	0.30		1.8.3.1.9	Cryo Cold Bypass (1	kilometer)	- what was this	? fairly pricev!		G	rhinciuc
		1.8.3.	2 Cryogen	ic Distribution - actua	lly include	d above 1.8.3.	1.1.i - so can d	liscard this		

ilr iii

Cost Roll-ups

From Baseline to a RDR

;lr

ΪĹ

TESLA Test Facility Linac - DESY

Global Design Effort

- ILC cryomodule string test facility planned for the New Muon Lab
- Upgraded FNPL will provide beam tests of ILC cryomodules (FY08 and 09)

ILC R&D KEK STF

Plan of Superconducting RF Test Facility (STF)

$ilc R&D KEK ATF \rightarrow ATF2$

Global Design Effort

6-7 April 06

MAC Review

• Electropolishing Studies @ DESY

Global Design Effort

ILC RF unit at Fermilab

ir iit

- The BCD is now being used as the starting point and basis for the reference design / cost effort this year.
- Our goal is to produce a consistent design for the ILC, capable of delivering design performance.
- We will make every attempt to contain costs for the basis machine, while determining costs on an "international basis."
- The design will continue to evolve following the RDR, as the R&D provides CCB actions.

ΪĿ