

POSIPOL Workshop

CERN - 26-27-28 April 2006

Summary of the workshop on polarized positron source based on Compton back scattering

L. Rinolfi

CERN

POSITONS POLARISÉS (*in French*)

49 participants from :

- **Europe:** BINP, CERN, CNRS, DESY, INFN, IN2P3, IPN Lyon, LAL, Liverpool Uni., NSC-KIPT, Oxford Uni., Humboldt Uni., RWTH Aachen, Zeuthen.
- **USA:** ANL, BNL, LLNL, Northwestern University, SLAC.
- Asia: Hiroshima University, KEK, Kyoto University, Waseda University

49 participants from :

- **Europe:** BINP, CERN, CNRS, DESY, INFN, IN2P3, IPN Lyon, LAL, Liverpool Uni., NSC-KIPT, Oxford Uni., Humboldt Uni., RWTH Aachen, Zeuthen.
- **USA:** ANL, BNL, LLNL, Northwestern University, SLAC.
- Asia: Hiroshima University, KEK, Kyoto University, Waseda University
- + 2 Laser companies:

L. Rinolfi - ELAN workshop 15 May 2006 Orsay

49 participants from :

- **Europe:** BINP, CERN, CNRS, DESY, INFN, IN2P3, IPN Lyon, LAL, Liverpool Uni., NSC-KIPT, Oxford Uni., Humboldt Uni., RWTH Aachen, Zeuthen.
- **USA:** ANL, BNL, LLNL, Northwestern University, SLAC.
- Asia: Hiroshima University, KEK, Kyoto University, Waseda University
- + 2 Laser companies:

- discuss options and open issues of polarized positron source, based on laser Compton back scattering, for ILC and CLIC.
- assess and coordinate the outstanding R & D efforts towards a complete Compton source design.
- compare the issues with the undulator source.
- analyze the experimental programs carried out in the different laboratories.
- elaborate the baseline recommendation for CLIC.

Goals of physics at the LC

- Discovery of New Physics (NP)
 - complementary to the LHC
 - large potential for direct searches
 - impressive potential also for indirect searches
- Unraveling the structure of NP
 - precise determination of underlying dynamics and parameters
 - model distinction through model-independent searches
- High precision measurements
 - test of the Standard Model (SM) with unprecedented precision
 - even smallest hints of NP could be observed

Beam polarization = decisive tool for direct and indirect searches!

Polarization requested by physics

for ILC and CLIC

P (e⁻) ~ 90%

P (e⁺) ≥ 60%

L. Rinolfi - ELAN workshop 15 May 2006 Orsay

Two options for Compton

Compton - Ring

physics/0509016 CARE/ELANDocument-2005-013 CLIC Note 639 KEK Preprint 2005-60 LAL 05-94 September2,2005

Conceptual Design of a Polarized Positron Source Based on Laser Compton Scattering

A Proposal Submitted to Snowmass 2005

Positron charges for linear colliders

	Rep rate Hz	# of bunches per pulse	# of e ⁺ per bunch	# of e ⁺ per pulse	
SLC	120	1	5.1010	5.1010	
				<u>(X 10)</u>	
CLIC (3 TeV)	150	220	2.56.10 ⁹	$56.3.10^{10}$	
NLC	120	192	$0.75.10^{10}$	$1.4.10^{12}$	
TESLA (TDR)	5	2820	2.10^{10}	5.6.10 ¹³	
ILC	5	2820	2.10^{10}	5.6.1013	
(Nominal)				(X 1000)	
ILC (Upgrade)	5	5600	1.10^{10}	5.6.10 ¹³	

ILC polarized e+ source w. CO2 or YAG laser

A preliminary lattice has been designed for ILC (*E. Bressi, S. Guidici / INFN*) => Insertion of wigglers and/or increase energy ring

Preliminary design for ILC and for CLIC (*E. Bulyak, P. Gladkikh / NSC-KIPT*) => RF phase manipulation in non linear lattice

Idea of bunch compressor with RF and magnetic chicane (*J. Urakawa / KEK*) Bunch length reduced to 1mm in the region of IP:

- \Rightarrow Photon yield increased by 4
- \Rightarrow Bunch charge from 10 nC to 2.5nC

Keeping 30 IP in the straight section of the Compton Ring, the injected laser energy can be reduced from 750μ J to 25μ J.

=> 30 mode-lock laser oscillators with 325MHz repetition rate and 25 μ J output laser pulse.

High power ultra-fast fiber amplifiers

Y. Zaouter / Amplitude Systems

- Fiber design
 - Diffraction limited operation already demonstrated in a passive 100 µm core diameter microstructured fiber
- Energy and power improvement
 - 10 mJ, 1ns may (will ?) be achieved in the coming years
 - "Kilowatt Femto" is feasible

J. Sheppard / SLAC M. Kuriki / KEK

- Photon production at 150 GeV electron energy
- ► K=1, λ =1 cm, 200 m long helical undulator
- Two e+ production stations including a back up.
- Keep alive auxiliary source is e+ side.

Common challenges for all schemes

Study presented by R. Chehab/IN2P3 for e+ generated from photons from the *Compton ring*. Simulations with **CAIN** for the photons, with **EGS** for the pair creation and with **PARMELA** for the e+ beam transport.

Study presented by W. Gei/ANL for e+ generated from photons from the *Undulator*. Simulations with **Monte Carlo** for the photons, with **EGSnrc** for the pair creation and with **PARMELA** for the e+ beam transport. Capture systems (Magnets and RF)

L. Rinolfi - ELAN workshop 15 May 2006 Orsay

2) Confirmed propagation of the polarization from laser -> γ-rays
 -> created pairs e⁺s & e⁻s.

E-166 Experiment@SLAC

 e^+ energy & polarisation E_{e1} =9.62 MeV, K=0.17, $\gamma \theta_{out}$ =none Longitudinal Polarization 5 and Relative Number in Bin 7 7 7 9 8 8 8 1 1 0.20 $\mathbf{2}$ 8 10 12 Positron Energy (MeV) 16 4 6 14 18 20

A. Schaelicke / DESY - Zeuthen P. Schueler / DESY

Expected e⁺ polarization from simulations

 P_{γ} = photon polarization δ = asymmetry P_{e} = target polarization $A\gamma$ = analyzing power

F. Zomer / LAL

- 4 mirrors 2D or 3D high finesse cavity
 - Beam waist reduction & mechanical stability
 - Polarisation transport can be controlled & astigmatism effects reduced with 3D configuration
 - Non-paraxial corrections may limit the waist reduction
 - Future: use a high power fibre laser to increase the laser power inside the cavity

Start mechanical setup in Autumn 2006

High circulating power → coating damage AND non linear effects ?

Compton or Undulator for CLIC ?

In principle equivalent, but not quite (V. Strakhovenko / BINP)

photon spectrum mean photon energy angular photon distribution power on conversion target collimation efficiency cost

Avoid Compton ring?

=> head-on collisions
=> use CLIC drive beam

CLIC - ILC differences

- => Bunch spacing in DR: 0.533 ns instead of 2.8 ns
- => 150 Hz instead of 5 Hz
- => e+ pre-damping ring required for CLIC (small emittances)

A possible Compton design for CLIC

F. Zimmermann / CERN

Recommendations

Compton

- 1) Publish a design of a Compton ring with BC
- 2) Develop reliable power laser and increasing cavity finesse taking into account polarization
- 3) Simulate stacking into DR
- 4) Experimental demonstration of fast stacking (KEK-ATF or DA Φ NE).
- 5) Use CTF3 to test head-on scheme
- 6) Crab angle crossing scheme
- 7) Try to relax parameters in the Compton ring increasing the duty cycle
- 8) Optimization on the energy of Compton photon
- 9) Experimental optimization of Compton source inside laser cavity at BNL-ATF
- 10) Comparison of single pass scheme and ring scheme
- 11) Experimental demonstration using optical cavity and storage ring.
- 12) Compare CO2, YAG and Fibers Lasers
- 13) Possible use of laser cavity for gamma-gamma collisions

Undulator

- 1) Publish results from E-166
- 2) Evaluate and publish the emittance degradation in the undulator (CLIC emittance constraints, dynamic vacuum issues, wake fields, ion effects, spurious linac dispersion)
- 3) Evaluate the coupling of operation specially for CLIC
- 4) Do technical demonstration of undulator (several meters)
- 5) Finalize the complete layout
- 6) Do systematic studies of the collimators
- 7) Describe the transition between the keep-alive source and the Main linac
- L. Rinolfi ELAN workshop 15 May 2006 Orsay

for Compton and Undulator

- 1) Analyze systematic errors of polarization measurements
- 2) Compare yield and polarization for both cases
- 3) Analyze the remote handling in radioactive area
- 4) Compare heat load dynamics for all schemes
- 5) Simulate the capture and transmission of e⁺
- 6) Optimize pre and post selection of e⁺
- 7) Evaluate cost estimate

Letter of Intent submitted to EU FP7 JRA on 'Positron polarized (POSIPOL) sources'

Design Study

A. Variola / LAL

- > parameters optimization
- Compton ring design
- > collection system design
- multiple injection schemes

Technological R&D

- ➢ high-power & high-repetition rate lasers
- Fabry-Perot optical cavities in pulsed regime
- > polarimetry

Test Facility Experiments

> validation at <u>ATF & Da Φ ne</u> accumulation ring

- Aims of the workshop fulfilled rather well with assessments of outstanding R & D efforts for a complete Compton source design.
- Recommendations in order to solve the issues related to the Compton source and to the Undulator source elaborated in common.
- The experimental programs carried out in the different laboratories have shown very encouraging results.
- A proposal for a JRA "POSIPOL" in the FP7 program has been submitted.
- Web address for the POSIPOL workshop including all talks: www.cern.ch/posipol2006

L. Rinolfi - ELAN workshop 15 May 2006 Orsay