Superconducting RF Facility

Specific requirements for protons and muons with respect to e+/e-

Superconducting Proton and Muon acceleration need similar cavities as linear colliders, except for some differences:

RF frequency:

- lower than ILC: 200 MHz (μ) ... 800 MHz

Lorentz force detuning:

- elliptical cavities β =0.5 \Rightarrow weaker cavities
- rapid pulsing (50 .. 100 Hz) ⇒ stronger mechanical resonant built-up

Power Coupler:

- protons need more peak/average power

Engineering considerations:

- modules might get (radio-)activated
 - ⇒ fast hands-on repair/maintenance
- highest reliability/accessibility (factories)
 - ⇒ short modules ≠ long string ??
- ILC needs more E, $Q_0 \Rightarrow$ potential \$ gain

Special μ-requirement:

- single cell, very large opening

Specific R&D

- Optimized fabrication methods
- Power couplers (200 ... 800 MHz)
- Nb/Cu technology for 200 MHz μ-cavity
- ['Mechanical developments' (piezo, fast tuner, cryostats, ...) and their warm tests do not need to be addressed in the SC facility.]

Conclusion: Test Facility Requirements

- Low (and high) power RF set-up for testing at 200 ... 800 MHz
- Cooling capacity and cryostat(s) of corresponding size
- Bunker(s) for testing the 'Mechanical developments' at cryo temperature
- Adequate priority for using the common resources