Euroleap kickoff meeting May, 2006, Orsay, France

Pre-formed channels for laser-plasma accelerators

N. C. Lopes

Grupo de Lasers e Plasmas

Instituto Superior Técnico, Lisbon

nelson.lopes@ist.utl.pt cfp.ist.utl.pt/golp

Outline

Previous work

- Laser-triggered disharge channels
- Capillary discharges
- Discharges on a capillary sequence

Ongoing work

- Discharges through a sequence of thin dielectric plates
- Guiding & pulse collision on lasertriggered channels
- High voltage pulser

Collaborators

► IST

Laser-plasma

- Marta Fajardo
- João Dias
- R. Onofrei
- N. Lemos
- 4 underg. stds

• Gonçalo

Figueira

- L. Cardoso
- J. Wemans
- 2 underg.

 \sim . 7

► UCLA

- Chan Joshi
- Chris Clayton
- Ken Marsh
- Carmen Constantin
- F. Fang
- J. Ralph
- A. Pak

Laser-triggered high-voltage discharges N. C. Lopes et al., Phys. Rev. E, 68, 355402 (2003)

Plasma production after laser triggering

🗕 Helium

SUPERIOR

- N₀ 2.5x10¹⁸ cm⁻³
- 🗕 Gap 15 mm
- Trigger laser pulse
 - 1053nm
 - 800 fs
 - 0.26 J
 - 10⁻⁶ contrast
 - F/5 focusing

● Plasma diameter ≈150

Reproducible tunable delay

radius [mm]

6

Plasma source 1: D 500 um capillary discharge

for the capillary discharge, vacuum pumps, diagnostics

λ

Measuring plasma density (H_{α} Stark broadening)

Low intensity laser guiding in single capillary

Measuring the Plasma Temperature using the $I_{H-\alpha}/I_c$ and $I_{H-\beta}/I_c$ ratios

Measuring the electron density (time resolved)

 $n_{e \max} \approx (7.1 \pm 0.8) \times 10^{18} \text{ cm}^{-3}$

$$\Delta N = \frac{L}{\lambda_0} \left[1 - \left(1 - \frac{\omega_p^2}{\omega^2} \right)^{1/2} \right] \rightarrow n = 3.528 \frac{\Delta N}{L_{[mm]}} (\times 10^{18} cm^{-3})$$

Plasma source 2:

D 300 μm, length 6 mm - 10 mm - ...

Why

How

- increase and change channel length
- decrease filling time and and gas leak to the vacuum system
- use of high and lower plasma density
- include transversal plasma diagnostics
- setup inside vacuum chamber
 use a sequence of capillaries aligned inside a gas cell

Guiding in multiple capillary discharges

UCLA

Channeling device at vacuum chamber, rep. rate 1 sh. / 5-20 s

(vacuum limited, depending on pressure), lifetime $> 100\ 000$ shots (so far)

Preliminary low intensity guiding

Output without guiding Output with guiding

side view Schlieren with background subtraction

Discharge trough a sequence of thin plates

Why • Radial plasma expansion

SUPERIOR

- No laser triggering
- Fast gas filling
- Different density
- How regions • Reduce the capillary length to about the capillary diameter

• Keeping the gaps

- Length 2 cm
- Gaps 2.5 mm
- Plate tickness 0.25 mm
- Hole diameters 0.3 mm
- Voltage 20 80 KV

- Thyratron Switch 0-30 KV, 0-5KA
- Transmission Line Transformer 2 x 4 (input Z 6 Ohm, output Z 100 ohm)
- Shockline for ns rise time
- Pulse duration 50-100 ns
- Trigger sync. with laser

IST laser system

Conclusion

- Laser-triggered channels on free space
 - Characterization and guiding
- Channels in a sequence of capillaries
 - Ready for high-power guiding (1 cm dephasing length)
 - Characterization at lower densities
- Channels in a sequence of thin plates
 - Characterization after July 06
- Support at IST
 - High-voltage pulser
 - 20 TW Laser system