The Vertex

Norman Graf
SLAC
July 19, 2006




What 1s a Vertex?

 Within the context of HEP event reconstruction, a
vertex i1sloosely understood as the point at which
some aggregate of trajectories originates.

 Most naively, this can be treated as the
Intersection of reconstructed tracks resulting from
charged particles.

* Most correctly, the vertex is considered as the
point of origin of decay products of a particle and
can thus be treated as a particle itsalf.




The Vertex as ReconstructedParticle

e The latter Isthe approach taken by the LC event
data model and iswhy there is (to-date) no explicit
Vertex class defined in either the EDM or In
LCIO.

* Theinterface for ReconstructedParticle (RP) Is

Intentionally minimal, and some functionality will
need to be added.

— Question iswhether the RP can fully stand in for a
Vertex or whether we need anew classin LCIO.




Vertex Proposal  ReconstructedParticle

|
A =
- A

getM omentum() getM omentum()

getMass() getMass()

getCharge() getCharge()
getPosition() getReferencePoint()

getCovMatrix() getCovMatrix()
getChi2()

getProbability()

getDistanceT oPreviousV ertex()
getErrorDistanceToPreviousV ertex()

getParameters()

getTracks()

addTrack()

getPreviousVertex()




Vertex and RP smilarities

» Ascan be seen from the previous dlide, thereisa

high degree of overlap between the proposed
Vertex class and the existing RP class.

e Can the existing RP class be amended to

Incorporate the additional information/functionality
required of the Vertex class?

 If not, and anew class | S needed, is the proposal
complete?




Deficienciesin RP

— If s0, do we need both? Or do we need getDOF()?

e Thefollowing all seem very non-OO for Vertex,
since a Vertex, as defined, Is composed of Tracks,
and not Vertices. Relationship between this and
PreviousVertex isill-defined.

— getPreviousVertex()
— getDistanceT oPreviousV ertex()
— getErrorDistanceToPreviousV ertex()

e Last 2 could be calculated from 2 Vertex objects.




RP deficiencies, continued

* However, this construct (i.e. “pointing” to
previous object) makes perfect sense within the
context of a hierarchical ReconstructedParticle,

since RP’ s are themselves composed of RP's, e.q.
-B°—>D*X, D* > K-t*n*

* Not clear what getParameters() refersto.




Vertex Deficiencies

If we are to have a dedicated Vertex class, then
some amount of thought should be devoted to its

construction.

What does a Vertex represent?

Of what Is It composed?

What functionality does it have?

How does it interact with other classes?
How should it be persisted?




What does a Vertex represent?

e The proposed Vertex class seems to represent
simply the fitted point of intersection of
reconstructed tracks representing charged particle
trgectories.

In the current LCIO EDM aVertex ISa
ReconstructedParticle. To-date we have not
defined exactly how composite RP' s areto be
constructed. Clearly avertex fit would be the most
appropriate way to do this.

— Requires covariance matrix on RP “reference point”.
— what else?




Of what Is a Vertex composed?

= AP
|
L L]
L

* The proposed Vertex class seems to be composed

only of reconstructed tracks representing charged
particle trgectories.

 |tisclear that thiswill have to be expanded to

Include trajectories of neutral particles aswell.

— If not RP, we will need to introduce another classto
represent elther a charged or neutral trajectory.




What Vertex information 1s needed?

e

—
2
L v
WAL

- N

The vertex position (X) and covariance matrix.

The vertex “geometrical momentum” (q) and cov.
Covariance terms between x and q.

mass? If so, requires mass hypothesis for constituents.

— OK for RP, but do we now add massto Traectory?

Constraining constituents to originate from a common
vertex Improves each trgjectory measurement but also
Introduces covariance terms between all of them

— do we want to save improved tracks and full cov matrix?
Information on constraints applied in fit (see later)




What functionality does it have?

It 1S not clear how the proposed Vertex classisto
be used. |s seems to be seen assimply a
mechanism for flavor-tagging | ets.

How would the primary Interaction Point be

nandled?
How are conversion pairs, or Vee' s handled?

In the current model, the hierarchy of RP's
represents the sequential decay/interaction of
previous RP's.




| nteraction with other classes.

In order to accommodate both charged and neutral
particles, anew class (Tragectory?) would have to
be introduced. Vertex would then be composed of

these objects.
|sthe Vertex then also a Traectory?
|s the Vertex object a constituent of the RP?

All handled naturally if one does not introduce an
explicit new class, but treats a vertex as a particle.

13



Thoughts on Fitting

v,
& AN,
8
L W
p W

* Clearly, one has to accommodate the possibility of
constraints when fitting a common vertex.

— Constraint to a prior vertex position.
e Often referred to as a beam-constraint.

— Constraint to a particle mass
— Constraint to a particular direction
* either to the | P, or a previous vertex.

« All affect the fit, reducing the number of degrees
of freedom.

o Will need to discuss how to address this issue.




Vertexing in org.lcsm

v,
& AN,
8
L W
p W

Implemented in Java since Snowmass 2001.
— Updated for org.lcsim by Jan Strube.

e Found vertices good enough for flavor-tagging.

* \WWe are now concentrating on the full vertex fit,
including neutrals.

— will compare “pT-corrected” massto full fit mass
Including neutrals in the jet.




Additional Information

* Thereisan ongoing discussion of thistopic on the
forum.

e Please see:




