
Norman Graf
SLAC

July 19, 2006

The Vertex

2

What is a Vertex?

• Within the context of HEP event reconstruction, a
vertex is loosely understood as the point at which
some aggregate of trajectories originates.

• Most naively, this can be treated as the
intersection of reconstructed tracks resulting from
charged particles.

• Most correctly, the vertex is considered as the
point of origin of decay products of a particle and
can thus be treated as a particle itself.

3

The Vertex as ReconstructedParticle

• The latter is the approach taken by the LC event
data model and is why there is (to-date) no explicit
Vertex class defined in either the EDM or in
LCIO.

• The interface for ReconstructedParticle (RP) is
intentionally minimal, and some functionality will
need to be added.
– Question is whether the RP can fully stand in for a

Vertex or whether we need a new class in LCIO.

4

Vertex Proposal

getMomentum()
getMass()
getCharge()
getPosition()
getCovMatrix()
getChi2()
getProbability()
getDistanceToPreviousVertex()
getErrorDistanceToPreviousVertex()
getParameters()
getTracks()
addTrack()
getPreviousVertex()

getMomentum()
getMass()
getCharge()
getReferencePoint()
getCovMatrix()

getTracks()

ReconstructedParticle

5

Vertex and RP similarities

• As can be seen from the previous slide, there is a
high degree of overlap between the proposed
Vertex class and the existing RP class.

• Can the existing RP class be amended to
incorporate the additional information/functionality
required of the Vertex class?

• If not, and a new class IS needed, is the proposal
complete?

6

Deficiencies in RP

• Are getChi2() and getProbability() related?
– If so, do we need both? Or do we need getDOF()?

• The following all seem very non-OO for Vertex,
since a Vertex, as defined, is composed of Tracks,
and not Vertices. Relationship between this and
PreviousVertex is ill-defined.
– getPreviousVertex()
– getDistanceToPreviousVertex()
– getErrorDistanceToPreviousVertex()

• Last 2 could be calculated from 2 Vertex objects.

7

RP deficiencies, continued

• However, this construct (i.e. “pointing” to
previous object) makes perfect sense within the
context of a hierarchical ReconstructedParticle,
since RP’s are themselves composed of RP’s, e.g.
– B0 → D+ X, D+ → K- π+ π+

• Not clear what getParameters() refers to.

RP(π+)
RP(π+)
RP(K-)
…
RP(D+)
…
RP(B0)

8

Vertex Deficiencies

• If we are to have a dedicated Vertex class, then
some amount of thought should be devoted to its
construction.

• What does a Vertex represent?
• Of what is it composed?
• What functionality does it have?
• How does it interact with other classes?
• How should it be persisted?

9

What does a Vertex represent?

• The proposed Vertex class seems to represent
simply the fitted point of intersection of
reconstructed tracks representing charged particle
trajectories.

• In the current LCIO EDM a Vertex IS a
ReconstructedParticle. To-date we have not
defined exactly how composite RP’s are to be
constructed. Clearly a vertex fit would be the most
appropriate way to do this.
– Requires covariance matrix on RP “reference point”.
– what else?

10

Of what is a Vertex composed?

• The proposed Vertex class seems to be composed
only of reconstructed tracks representing charged
particle trajectories.

• It is clear that this will have to be expanded to
include trajectories of neutral particles as well.
– If not RP, we will need to introduce another class to

represent either a charged or neutral trajectory.

11

What Vertex information is needed?

• The vertex position (x) and covariance matrix.
• The vertex “geometrical momentum” (q) and cov.
• Covariance terms between x and q.
• mass? If so, requires mass hypothesis for constituents.

– OK for RP, but do we now add mass to Trajectory?

• Constraining constituents to originate from a common
vertex improves each trajectory measurement but also
introduces covariance terms between all of them
– do we want to save improved tracks and full cov matrix?

• Information on constraints applied in fit (see later)

12

What functionality does it have?

• It is not clear how the proposed Vertex class is to
be used. Is seems to be seen as simply a
mechanism for flavor-tagging jets.

• How would the primary Interaction Point be
handled?

• How are conversion pairs, or Vee’s handled?

• In the current model, the hierarchy of RP’s
represents the sequential decay/interaction of
previous RP’s.

13

Interaction with other classes.

• In order to accommodate both charged and neutral
particles, a new class (Trajectory?) would have to
be introduced. Vertex would then be composed of
these objects.

• Is the Vertex then also a Trajectory?
• Is the Vertex object a constituent of the RP?

• All handled naturally if one does not introduce an
explicit new class, but treats a vertex as a particle.

14

Thoughts on Fitting

• Clearly, one has to accommodate the possibility of
constraints when fitting a common vertex.
– Constraint to a prior vertex position.

• Often referred to as a beam-constraint.
– Constraint to a particle mass
– Constraint to a particular direction

• either to the IP, or a previous vertex.

• All affect the fit, reducing the number of degrees
of freedom.

• Will need to discuss how to address this issue.

15

Vertexing in org.lcsim

• The ZvTop Vertex Finding algorithm has been
implemented in Java since Snowmass 2001.
– Updated for org.lcsim by Jan Strube.

• Found vertices good enough for flavor-tagging.
• We are now concentrating on the full vertex fit,

including neutrals.
– will compare “pT-corrected” mass to full fit mass

including neutrals in the jet.

16

Additional Information

• There is an ongoing discussion of this topic on the
forum.

• Please see:
– Vertex discussion in lcio @ forum.linearcollider.org

