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An Imaginary Discovery

Let us imagine that we have an excess in a many-body final state.
(For instance, b̄bl+l− 6ET). What is it?

• Is it SUSY?

• Is it UED?

• Is it Little Higgs?

• Is it a leptoquark?

• Is it squark+leptoquark production?

In this talk I ask: how do we tell what it is and how do we quantify
how well we know?



Model Independence

While SUSY/UED/Little Higgs are interesting, they are the wrong
questions to ask at the level where one has observed an excess.

Instead we wish to ask the following

1 . What is the phase space structure?

2 . What is the spin structure?

To answer these we first must answer

3 . What is the spectrum of the missing energy?

and to answer that we must answer

4 . What are the masses appearing in the phase space?



How do we do Data Analysis?

Experimentalists and theorists alike generally ask: “given this pile of
4-vectors, how do I combine them to solve for an interesting quan-
tity?” – This path leads to plots, histograms, likelihoods, neural
networks, linear approximations, gaussian errors, monte carlo, and
hopefully, a measurement.

Most analyses come down to: Find a transformation f(pµ
1, . . . , p

µ
N)

that when histogrammed, gives a simple function.

For instance in spin studies,

f(pµ
1, . . . , p

µ
N) = cos θ =

E1E2 − p
µ
1p2µ

|~p1||~p2|
,

dσ

df
= 1± a cos θ ± b cos2 θ

or resonances

f(pµ
1, . . . , p

µ
N) = p2

ij = (pµ
i + p

µ
j )

2,
dσ

df
=

1

(p2
ij −M2)2 + M2Γ2

.

By now it is clear that there may be no simple functions. These
methods are also guaranteed to lose information. Furthermore, some
things worth measuring are not simple.



A SUSY case (Barr Method)

There is a menu of possible

things to plot and curves to

fit.

Strong assumptions about

the phase space structure,

and where a final state par-

ticle appears in the decay

chain.

Can we trust the statistics

when the analysis chooses

from this menu? What is

the trial factor?

The number of things to

plot/fit is exponential in the

number of external fields.

[Gjelsten, Miller, Osland

hep-ph/0410303]



Some of the Topologies for b̄bl+l− 6ET
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A Theorist’s Perspective on Data Analysis

Every particle discovery comes down to measuring a multi-dimensional

probability distribution for observables.

Therefore I ask:

Given this theory, what are the statistics underlying it, and what is

the optimal way to extract information?



Cross Sections as Probability Densities

A cross section generally is given by

σ =
1

F

∫ ∣∣∣M(pµ
0, p

µ
i ,Y)

∣∣∣2
∏

i

d3~pi

(2π)32Ei

 (2π)4δ4(pµ
0 −

∑
ip

µ
i )

for some initial state momenta p
µ
0 and final state momenta p

µ
i . This is

a zero-dimensional projection of a high-dimensional phase space, and

as such contains very little information! Buried in here somewhere is

all the information that is to be had.



Cross Sections as Probability Densities

A cross section generally is given by

σ =
1

F

∫ ∣∣∣M(pµ
0, p

µ
i ,Y)

∣∣∣2
∏

i

d3~pi

(2π)32Ei

 (2π)4δ4(pµ
0 −

∑
ip

µ
i )

for some initial state momenta p
µ
0 and final state momenta p

µ
i . This is

a zero-dimensional projection of a high-dimensional phase space, and

as such contains very little information! Buried in here somewhere is

all the information that is to be had.

Let us do a little rearrangement to retain all information in the high-

dimensional space.

P (~p1, . . . , ~pN) =
1

σ

dσ∏
i d3~p

=
(2π)4−3N

2NFσ
∏

i Ei

∣∣∣M(pµ
0, p

µ
i ,Y)

∣∣∣2 δ4
(
p
µ
0 −

∑
ip

µ
i

)
.

this is a probability density expressing the probability of a particular

configuration of momenta. For N external particles, it is a 3N − 4

dimensional space.



Probability Densities for Hadron Colliders

The previous equations assumed all initial and final state momenta

were known. e.g. a lepton collider. At hadron or photon colliders

this is not the case. So we must integrate over the initial state as

well.

Phad(~p1, . . . , ~pN , x1, x2) =
1

σ

dσ

dx1dx1
∏

i d3~p

=
(2π)4−3N

2NFσ
∏

i Ei
fi1(x1)fj2(x2)

∣∣∣Mij(p
µ
0, . . . , p

µ
N ,Y)

∣∣∣2 δ4
(
p
µ
0 −

∑
ip

µ
i

)
.

for parton i and j having Parton Density Functions fi1 and fj2 re-

spectively and p
µ
0 =

√
s(x1 + x2; 0,0, x1 − x2).



Probability Densiities with Missing Energy

If one expects new physics to explain the Dark Matter component

of the universe, one generically expects a dark matter particle, with

non-zero mass to escape the detector.

Therefore in events with missing particles, we must project the pre-

vious probability densities onto the space of L measured particles

Pmeas(~p1, . . . , ~pL) =
(2π)4−3N

2NFσ
∏

l El

∫ ∣∣∣Mij(p
µ
0, . . . , p

µ
N ,Y)

∣∣∣2 δ4
(∑

ip
µ
i

) ∏
m

d3~pm

Em

for lepton colliders or

Pmeas,had(~p1, . . . , ~pL) =
(2π)4−3N

2NFσ
∏

l El

×
∫

f1i(x1)f2j(x2)
∣∣∣Mij(p

µ
0, . . . , p

µ
N)

∣∣∣2 δ4
(∑

ip
µ
i

)
dx1dx2

∏
m

d3~pm

Em

for hadron or photon colliders.



Summary of What We Know

These probability densities are fundamentally what we measure. Let
us denote this “complete probability density” by

P (x,x′|Y) = P (x′|x,Y)P (x|Y)

where x = {~p1, . . . , ~pL} are our observables for L visible particles, x′ =
{~pL+1, . . . , ~pN} are “missing” observables∗, and Y = {M1,Γ1, M2,Γ2, etc}
is the set of Lagrangian parameters.

We measure

P (x|Y) =
1

σ(Y)

dσ

dx
=

∫
P (x,x′|Y)dx′.

If we have observed some events X = {x1, . . . ,xN} we can write the
distribution of missing observables

P (x′|X,Y) =
∫

P (x,x′|Y) '
1

N

N∑
i=1

P (xi,x
′|Y)

P (xi|Y)

But this is only meaningful if we know Y!
∗subject to constraints from the δ4(

∑
i p

µ
i )



Connections to Traditional Methods

Traditional, 1-dimensional analyses rely on approximate factorization

of P (x|Y). For instance if I want to measure a mass, I want to write

P (x|Y) = P ((pi + pj)
2|M,Γ)P ({x} − {(pi + pj)

2}|Y − {M,Γ})
+ε(x|Y)

If P (x|Y) factorizes in this manner (ε(x|Y) = 0) then (pi + pj)
2 is a

sufficient statistic of M and Γ.

ε(x|Y) is in general non-zero, but might be shown to be small (for

instance, ε(x|Y) will contain finite-width effects, interference, and

NLO corrections which are all small).

The only interesting factorization for missing-energy events is

P (x|Y) = P ({(pi + pj)
2}|{Mk,Γk})P (everything else)

because narrow propagators vary quickly with (pi +pj)
2 while numer-

ators are slowly-varying. Masses do not factorize from each other.



Connections to Traditional Methods II

From Meade, Reece,

hep-ph/0601124
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Constructing a Likelihood

Our task is to determine Y for a given set of events X. The Neyman-
Pearson lemma tells us that the most powerful statistic for differen-
tiating two hypotheses Y and Y(n−1) is the ratio of two Likelihoods.
Our “complete data” Likelihood is

L(Y|X,X′) =
N∏

i=1

P (xi,x
′
i|Y).

But this isn’t useful yet since X′ is unknown. In statistics literature
this is referred to as the “missing data” problem. A solution is the
EM Algorithm. It consists of two steps

• Compute the Expectation of the Likelihood above, given the ob-
served data X and some guess for parameters Y(n−1):

Q(Y,Y(n−1)) = E
[
logP (X,X′|Y)|X,Y(n−1)

]

• Maximize this expectation over Y to determine a new guess Y(n).



EM Algorithm

To determine Y we must maximize

Q(Y,Y(n−1)) = E
[
logP (X,X′|Y)|X,Y(n−1)

]
=

∫
logP (X, x′|Y)P (x′|X,Y(n−1)) dx′

=
1

N

N∑
i,j=1

∫
logP (xi, x

′|Y)P (xj, x
′|Y(n−1)) dx′∫

P (xj, x′|Y(n−1)) dx′

over Y. Note that Q(Y,Y′) is an analytic function of Y. It is guar-
anteed to converge to the correct Y.

Note that if I choose the wrong Y(n−1), and I maximize some like-
lihood, I will converge to some other Y(n) that is also not correct.
(e.g. I cannot generally obtain the correct Y in one step)

This algorithm is iterative, and we are forced to an iterative solution
since if we don’t know the masses, then we don’t know the missing
momentum spectrum. But if we don’t know the missing momentum
spectrum, then we don’t know the masses.
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These graphs are obtained

by doing a Monte Carlo over

missing momentum, assuming

a fixed distribution for missing

momentum. I plot an estima-

tor for MW vs an estimator

Mt.

• When masses are low,

peak of distribution occurs

above the actual masses.

• When masses are high,

peak of distribution occurs

below the actual masses.

This is because the distribu-

tion of missing momentum is

more consistent with ' 200

GeV masses!



Systematic Analysis

The most exciting phrase to hear in science, the one that heralds new

discoveries, is not ”Eureka!” (I’ve found it!), but ”That’s funny. . . ”

– Isaac Asimov

The variables usually considered in SUSY/DM studies are almost

useless to look at and develop an intuition about. There are no

sidebands, no peaks. Everything looks like a falling pT spectrum,

with a broad bump if you’re lucky.

We need to be able to slice and dice this analysis at stages before a

final result is presented. A human will notice strange bumps in distri-

butions that a Likelihood analysis will not. A human may recognize

when strange bumps are systematic errors. . .

Strongly coupled theories (Technicolor) have higher resonances (ρ/ρ′).
Would we notice?



Systematic Understanding

Once Y is obtained, one can perform detailed studies that may seem
impossible with traditional methods. For instance

• Is there only one missing particle, or more? Plot:

f(m2) =
∫

P (x,x′|Y)δ(m2 −
∣∣∣m2

b + M2
W − 2MWEb

∣∣∣
~pW=0

)dxdx′

where the argument of the delta function is evaluated in the W±

rest frame. Multiple invisible particles will give multiple bumps.

• Are there multiple overlapping signals? e.g. t̃ → bχ+ → bl+χ0
with t → bW+ → bl+ν. Plot:

f(m1, m2) =
∫

P (x,x′|Y)δ(m1−|p1+p2|)δ(m2−|p1+p2+p3|)dxdx′

Multiple signals (of the same kinematic topology) will give mul-
tiple bumps.

• Can one identify side-bands for background estimation?



Other Reasons to use Likelihoods

Given two hypotheses P (x|Y) and P ′(x|Y′), they can be directly com-

pared by constructing their Likelihood ratio, as usual

R =
L(x|Y)

L′(x|Y′)

which tells us if we can reject one hypothesis or the other. This

only works after we have determined the paramters Y and Y′, so we

already know the missing momentum spectrum in each case.

• Wide classes of Likelihood Ratio (LR) tests

• The LR statistic is invariant under reparameterization.



Resolution Functions

Running Monte Carlo and detector simulations for every possible sig-

nal, and every possible choice of parameters Y for each signal is

impractical.

But, this multiply-specifies the information we need. e.g. The de-

tector simulation is insensitive to the details of the hard scattering

matrix element. It is not necessary to simulate Z′ at 500 GeV and

also an off-shell Z at MZ = 500 GeV because the detector response

is identical.

I propose instead that we think hard about resolution functions. Our

probability densities of interest then become

Pmeas(x, x′|Y) =
∫

P (w, x′|Y)R(w, x|Z) dw.

Where the resolution function R(w, x|Z) describes how the final-state

partons w get mapped into detector objects x.



Resolution Functions ctd. . .

With a resolution function our Likelihood becomes

Q(Y,Y(n−1))

=
1

N

N∑
i,j=1

∫
logP (w, x′|Y)P (v, x′|Y(n−1))R(w, xi|Z)R(v, xj|Z) dwdvdx′∫

P (xj, x′|Y(n−1))R(w, xj|Z) dwdx′

This involes 2N integrals, which can be efficiently evaluated using

many techniques.

Under many circumstances, resolution functions factorize. e.g.

R(~pe1, ~pe1) = R(~pe1)R(~pe2)

R(~pb, ~pb̄, ~pe+, ~pe−) = R(~pb, ~pb̄)R(~pe+)R(~pe−)

One might need to generate detector simulation for b̄b pairs in any

configuration, but then you don’t have to repeat it when analyzing

any signal with 2 b’s! (e.g. LQ3 LQ3 → b̄bτ+τ−)



Computational Complexity and Resolution Functions

For an N-body final state, the computational complexity of running

a full detector simulation is O(eN).

With resolution functions one only needs to detector simulation for

factorizable pieces.

• As long as they are well-separated, leptons always factorize.

• Jets do not factorize due to color reconnections.

• Resolution functions may be taken from data.



Summary/Conclusions

• Due to non-factorization of probability densities with missing en-

ergy, there generally are no one-parameter sufficient statistics.

• Because we understand the probability densities responsible for

the data, HEP analyses are ideally suited to likelihood analyses.

• If we are only capable of finding SUSY, due to our ability to run

Monte Carlo or our limited analysis techniques, we may not be

capable of finding “something else”, and we risk shoe-horning any

and all signals into a SUSY bin.

• Detector resolution functions can reduce our model dependence,

and may reduce the computational complexity of analyses.


