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‘ Motivation I

The Higgs sector of the minimal supersymmetric extension of the Standard
Model (MSSM) is a constrained 2HDM. However, at one-loop all possible
2HDM interactions allowed by gauge invariance are generated (due to
SUSY-breaking interactions).

Thus, the Higgs sector of the MSSM is in reality the most general 2HDM
model (albeit with certain relations among the Higgs sector parameters
determined by the fundamental parameters of the broken supersymmetric

model).

The general 2HDM consists of two identical (hypercharge-one) scalar
doublets ®; and ®5. One can always redefine the basis, so the parameter

tan 3 = vy /v is not meaningful!

To determine the physical quantities, one must develop basis-independent

techniques.



‘ The General Two-Higgs-Doublet Model I

Consider the 2HDM potential in a generic basis:
V=m} & & +mL® @, — [m},®]®y 4 hoc] + Ir (2]®,)?
+EX2(B1@2)7 + As(D] 1) (RLD2) + Aa(D]2) (DP1)

+ LA (@]2) + [Ao(®[®1) + A(@182)] 2] ®s + hc.}

A basis change consists of a U(2) transformation ®, — U,;®;, (and ®! = QDgUJ&).

Rewrite V in a U(2)-covariant notation:

V — Yagcbgq)b _|_ %Zagcg(q)gq)b)(q)gq)d)

where Z ;.7 = Z.3,5 and hermiticity implies Y ; = (Ysa)™ and Z 3.5 = (Zbaaz)”- The
barred indices help keep track of which indices transform with U and which transform with

U'. For example, Y5 — UacYoqUY and Zypeq — UacU i UcgU)  Zefop



The most general U(1)gnm-conserving vacuum expectation value (vev) is:

v O ; C@
b,) = — : with Vg = € . :
(@a) \/§< Vg > < S3 e's >

where v = 2myy /g = 246 GeV. The overall phase 7 is arbitrary (and can be removed
with a U(1)y hypercharge transformation). If we define the hermitian matrix V; = 0,7;,
then the scalar potential minimum condition is given by the invariant condition:

Tr (VY) + 20 Z5.ViaVie = 0.

CLEC
The orthonormal eigenvectors of V,; are 0, and Wy, = V. €x, (with €12 = —ea1 = 1,
€11 = €22 = 0). Note that 9710, = 0. Under a U(2) transformation, 9, — U, 30, but:

Wy — (det U) " U ; Wy,

where det U = e'X is a pure phase. That is, W, is a pseudo-vector with respect to U(2).

~ . L — A Ak _ _
One can use w, to construct a proper second-rank tensor: W ; = W, W; = 0,5 — V-

Remark: U(2) 2SU(2)xU(1)y/Z2. The parameters m7,, mi,, mi,, and A1, ..., Ay
are invariant under U(1l)y transformations, but are modified by a “flavor"-SU(2)

transformation; whereas © transforms under the full U(2) group.



‘ The Higgs basis I

Define new Higgs doublet fields:
H, = (H!, H)=7.9,, Hy, = (H) , H)) = 0.:®,.
Equivalently, ®, = H0, + H2wW,. Since v.v, = 1 and v.w, = O, it follows that

(HY) = (Hy) = 0.

v
V2
The field H; defined above is invariant. However, under a U(2) transformation,

H2 — (det U)Hz .

For example, under the U(2) transformation U = diag (1, e'X), one can transform among
different Higgs bases that are related by a rephasing of the field H5. Quantities that are

invariant under SU(2) but not under U(2) will henceforth be called pseudo-invariants.

If we rewrite the Higgs potential V in the Higgs basis, we find:



V=Y H H, + YoH Hy + [Y3H[Hy + h.c.] + 12, (H] H,)?
+1Zy(HHy)? + Zs(H{Hy)(H}Hy) + Zy(H] Hy)(H} H))

+ {%Zs(H}LHQ)2 + [Zo(H{H\) + Z7(H}H2)] H{ Hz + h-C-} )

where
Yi=Tr (YV), Yo=Tr (YW),
Z1 = Zpeg VeaVie Zo = Zpeqg WeaWae
Z3 = Zapeq VeaWae Zy = Zggeq VoeWaa

are invariant quantities, whereas the following (potentially complex) pseudo-invariants

_ Ak A _ AR AN A A
Y3 =Y, v, wy, 25 = Zypeq Vg Wy Uz Wy,

_ Nk N ANK A _ K A ANk A
Ze = Zgpeq Vg Vb Vs Wy , L7 = Zgpeq Vg Wy W; Wq -

transform as [Y3, Zg, Z7] — (det U) " '[Y3, Zs, Z] and Zs — (det U) " ?Zs.



The invariants and pseudo-invariants in the generic basis are given by:
Y] = m%lc% + m%28% — Re(m%2ei£)325 ,
Yy = m%ls% + m%gc% + Re(m%QeiE)SQB :
vze't = %(W%Q - m%1)825 - Re(m%ﬁig)cw — iTm(mige’®)
Z1 = Alc% + >\2s% + %A345835 + 2594 [C%Re(Afjeif) + S%Re(/\7ei£)] ,

Zy = )\13% + AQC% + %)\345335 — 2s93 [S%Re()\GeZS) + C%Re(A7eZ£)] ,

Zy = gs %5 [A1 + A2 — 2A345] + A3 — sogcogRe[(Ag — Ap)e'é],
Zy = gs %5 [A1 + A2 — 2A345] + Ag — sogcogRe[(Ag — M),
Z5e®™ = 1535 [\ + Mg — 22345] + Re(A5e?™®) + icggTm(Age?),
—sggcogRel(Ag — Ap)e'd] isggIm[(Ag — A)et),
Zg e’ = —%sa5 [Mch — Aash — Aaseag — im(A5e”S)] + cgezgRe(ge’®),

+s3s33Re(A7e’®) + ic3Im(Age'®) + isBIm(Aze’S),
Z7e" = —ksog [N5h — Aach + Agaseap +ilm(Age?)| + s gszgRe(rge’®)

—|-6663[8Re(>\7€i§) + is%lm(AGeif) + z'c%Im()qei&) .

where A345 = )\3 + )\4 + Re(/\5 €2i£).



‘ The Higgs mass-eigenstate basis I

Starting in the Higgs basis,

G HT
H{ = s Hy = ’
1 <¢%(v+w?+iG0)> 2 <%(<Pg+ia0)>

where 90(1), gog and a” are neutral scalar fields, and H™ is the physical charged Higgs boson,
with mass qui =Y+ %Z3v2. If the Higgs sector is CP-violating, then gp(l), gpg, and A
all mix to produce three physical neutral Higgs states of indefinite CP. After employing the
potential minimum conditions: Y7 = —%Zlvz and Y3 = —%Z(wz, the resulting neutral

Higgs squared-mass matrix is:

Z1v? Re(Zg)v? —Im(Zg)v?
M = Re(Zg)v? Yo+ 1[Z3+ Z4+ Re(Zs)] v —1Im(Z5)v?
—Im(Zg)v? —3Im(Zs5)v” Yo + 3 [Zs + Zs — Re(Zs)] v*

Note that Z; does not appear above. The real symmetric matrix M is diagonalized by an
orthogonal transformation. That is, RMR" = Mp = diag (m7], m3, m3), where
RR" = I.



A convenient form for R is:

C12 —S812 0 C13 0 —S13 1 0 0
R = R12R13R23 — S12 C12 0 0 1 0 0 Co23 —S8923
0 0 1 S13 0 C13 0 S23 Co3
C12C13 —C23812 — C12513523 —C12C23813 + S12523
— C13512 C12C23 — 512813523 —C23512513 — C12823 ’
513 C13S523 C13C23

where ¢;; = cos 0;; and s;; = sin 0;;. The neutral Higgs mass eigenstates are denoted
by hl, h,z and hgi

hi 1
hg =R ng
h3 CLO

Since the mass-eigenstates h; do not depend on the initial basis choice, they are U(2)-
invariant fields. We have seen that Higgs basis parameters are either invariant or

pseudo-invariant. In particular, one can show that under a U(2) transformation,

. 0 —1 0
012, 013 are invariant, and e"'23 — (det U) e"23.



We can eliminate the middle man by expressing the mass eigenstate neutral Higgs directly
in terms of the original shifted neutral fields, 52 = CIDS — v@a/\/ﬁ:

1 =07 ~ ~ —10 %~k ~% 10 —0
= = [B0 @+ raae ™) + (6,0 + a0, |

for k =1,...,4, where hy = G and the invariant quantities qk; are given by:

k gkl dr2

1 C12C13 —812 — 1C128513

2 5$12€13 C12 — 1512513

3 513 1C13

4 7 0

Since Wae 723 is a proper U(2)-vector, we see that the mass-eigenstate fields are indeed

U(2)-invariant fields. We can now invert the above result to obtain:

G 9, + H w,
b, = v
—i0
Ua (leva —|_ dk2€ 23wa> hk
VR DD



If Im (Z;Zg) = 0, then the neutral scalar squared-mass matrix can be transformed into
block diagonal form, which contains the squared-mass of a CP-odd neutral mass-eigenstate
Higgs field A and a 2 X 2 sub-matrix that yields the squared-masses of two CP-even
neutral mass-eigenstate Higgs fields h and H.

If Im (Z%Z2) # 0, we can write Zs = | Zs|e'?6. Then the neutral scalar mass-eigenstates
do not possess definite CP quantum numbers, and the three invariant mixing angles 615,

013 and ¢g = Og — 023 are non-trivial.

The angles 013 and ¢¢ are determined modulo 7 from

Im(Z5 e 2923) 2Im(Zg e "923)
- y tan 2913 = ’
2Re(Z6 6_7“923) Z1 — 142/’02

tan 913 =

where A® = Y, + %[Zg + Z4 — Re(Z5e_2w23)]v2. These equations exhibit multiple

solutions (modulo 7r) corresponding to different orderings of the hj masses. Finally,

2 cos 2613 Re(Zg e "923)

tan 201, = : .
e c13 [c35(A2/v? — Z1) + cos 2013 Re(Z;5 e=21923))]

For a given solution of 613 and ¢g, the two solutions for 612 (modulo 7) correspond to

the two possible relative mass orderings of A1 and ho.



It is now a simple matter to insert the U(2)-covariant expression for ®, in terms of the
mass-eigenstate Higgs fields into the Higgs Lagrangian to obtain a U(2)-covariant form for
the physical Higgs boson and Goldstone boson interactions. [Note: the Goldstone boson
and neutral Higgs fields are invariant fields, whereas HE — (det U)T™ H* ]

The gauge boson—Higgs boson interactions are governed by the following interaction
Lagrangians:

_ g _ _
D%VVH = (ngW;WM + 2CW?TLZZMZ/J> Re(qkl)hk + emWAM(le_G + WM G+)

2 _ _
—ngsWZ’u(W[L'_G + Wy, G+),

2
_ |1 2+ — 9
D%VVHH— [49 WN WM +8—2ZNZ/J

Re(q;14x1 + 952d52) hjby
‘w

2

2 2ge _ _

"‘[ezAMAM"‘CgT(%_S%V) Zu2" + 2 (3 - sw) AMZu] (GTGT +HTHT)
%74

2.2
g s — —7 —
+{ (%egA“Wj — QWZ“W,T> (431G~ +apge V2BH )Ry + h.c.} :
w
g * * AP 1 R —<2 —10 —<2
gVHH = mlm(qjlqkl + qj2qk2)Zuhj 8“ hk — ?g{ZW/J [qle 8“ hk + kae 23H 8“ hk] + h-C-}

i _ _
+[ieA“+$(%—s%V) Z“] (GT 8, G  +HT G, H).



Likewise, the cubic and quartic Higgs couplings are given by (with hy = GO):
Loy = —2ohihihy|giatiRe(qp1) 21 + ai0qro Re(qp1)(Za + Z4) + Re(q Zr e 21923)
3h = —gvhjihphylaj1ap1Re(ap1) 21 + g52450 Re(qp1) (43 + 24 e(q;19K2902%5 €
+Re (2451 + a51]af1 9027 1923 1 Re(q* Z- 1023
951 + 4511951902 %6 € + Re(qj20qr090277 €
+~— —i693 + —16093
—vhG"G |Re(qp1)Z1 + Re(qpo e Zg)| +vhpH"H |Re(q1)Z3 + Re(qpoe Z7)

—%v hk{G_H+ ei923 [QZQZ4 + q1.9 e_2i923Z5 + 2Re(q11)Zg e_i923] + h.c.} ,

and
ah = —ghjhphihm | 41981901 9m1 21 + 4529529029m 222 + 2019%19029m2(Z3 + Z4)
] j
—2i0 —i0 —i0
+2Re(q;19519029m2Z5 ¢ " 23) + 4Re(aj19519p19m2Z6 ¢ | 23) + 4Re(q;1d52002dmaZ7 e " 23)
_ —ib
~hihcTG {qjlq;;lzl +aj2ap223 + 2Re(aj1952%6 ¢ 23)]
_ 0
—&hjhHTH [qg'zq}izzz + 45145123 + 2Re(g 108027 23)]
_ 0 —2i6 —i —if
_%hjhk{G HT 23 [%1@/2224 + q;lqk225 e 723 qjlqi;lZGe 23 qj2QZ2Z7€ ' 23] T h'c'}
—izicteete ~1zye Y H HYHT —(z3+ 26T G HYH™

—S(ZsHTHTGT G  +ZiH H GTaN) ~GtG (ZgH G +2z{H GT)~HTH (Z;H G~ +z;H GT).



‘ Example: Higgs self-couplings |

Lightest neutral Higgs boson cubic self-coupling:

g(hihihy) = _3U{Zlc?2ci)3 + (Z3 + Zy)ciacis|s123)” + cracis Re(sf23Z5e2i923)

0 0
—30?2633 Re(8123Z6€z 23) — ‘8123|2 Re(8123Z7e7’ 23)}
Lightest neutral Higgs boson quartic self-coupling:

g(hihihihy) = =3{ Z1c1yc1s + Zalsias|" + 2(Zs + Za)clychs|s12s]”
—1—20?20?3 Re(s%23Z562i923) — 46?2(3?3 Re(s123Z¢e'"23)

2 10
—4ciac13]s123) " Re(s123Z7¢"723) }
where S193 = S12 + i012813.

Note that these quantities depend on U(2)-invariants. In particular Zse 2923, Z;e 1923

and Z7e %23 are U(2)-invariants!



‘ The Higgs-fermion Yukawa couplings |

In the generic basis, the Higgs-fermion Yukawa Lagrangian is:
—_ —0 —_ -
— % = QUL Un+Q,®1(n, ") DY+ QI ®ony " Up+ Q0 &y (ny ") DY +-h.c.

where CTDz = 1029, Q% is the weak isospin quark doublet and U, D% are weak isospin
quark singlets in an interaction eigenstate basis, and 77?’0,77;]’0,77?’0,775’0 are 3 X 3

matrices in quark flavor space.

|dentify the fermion mass eigenstates by employing the appropriate bi-unitary transformation
of the quark mass matrices involving unitary matrices V', VLD, V]g, VRD, where
K = VLUVLDT is the CKM matrix. Then, define the U(2)-vector n® = (n?, nQQ) where

U __ U U0 U D __ D D.,0 D
na:VLna VRT7 na:VRna VLT'

In terms of the quark mass-eigenstate fields and the transformed couplings,

— Y = @LCT)@U(?UR + @Lq)anE?TDR + h.c.



We can construct basis-independent couplings by transforming to the Higgs basis.

—G%Y = @(ﬁlﬁlU —|— ﬁsz)UR + GL(Hlﬁ‘,DT —|— ngDT)DR + h.c. )

where

I/{,QE’U

*

ne, p® = Win

Ql

Inverting these equations yields: % = k9%, + p%W,. Under a U(2) transformation, <
is invariant, whereas p%¥ — (det U)p©.

U D

By construction, <~ and K

are proportional to the (real non-negative) diagonal quark
mass matrices M and M p, respectively. In particular,
v

My = —xY = diag(m, , me, ms) = VUMOVUT,
\/5 ( t) L U'R

v
Mp = \/—§/<;DT = diag(mgq, ms, mp) = VLDMODVJET,

where My, = (v/v2)3: nY? and M), = (v/V2)T, n2°T. That is, we have chosen the
unitary matrices V.7, Vg, VLD and Véj such that Mp and My are diagonal matrices with

real non-negative entries. In contrast, the pQ are independent complex 3 X 3 matrices.



The final form for the Yukawa couplings of the mass-eigenstate Higgs bosons and the

Goldstone bosons to the quarks is:

v

V2
1_— * v * 7 7

+;U{MU<qk1PL + a5 Pr) + —= [ais €20" Pr + i [0 P }Uhk

V2
T7 Dyt U1t + \/5— +
—%UMMH%%MKHPM%%—WM%&—MMEWG+ho.

(¥

g ;D{MD(QMPR b q P + [%2 e 923pD]TPR + g5 € 923pDPL] }th

By writing [PQ]THJr = [pQ€i923]T[ei923H+], we see that the Higgs-fermion Yukawa
couplings depend only on invariant quantities: the diagonal quark mass matrices, p©e’?23,

and the invariant angles 615 and 603.

The couplings of the neutral Higgs bosons to quark pairs are generically CP-violating as a
result of the complexity of the g2 and the fact that the matrices 23 p% are not generally
hermitian or anti-hermitian. %% also exhibits Higgs-mediated flavor-changing neutral
currents (FCNCs) at tree-level by virtue of the fact that the p® are not flavor-diagonal.
Thus, for a phenomenologically acceptable theory, the off-diagonal elements of p© must

be small.



‘ Conditions for CP-invariance |

The general 2HDM is CP-violating. The requirement of a CP-conserving bosonic sector is
equivalent to the requirement that the scalar potential is explicitly CP-conserving and that

the Higgs vacuum is CP-invariant. The bosonic sector is CP-conserving if and only if:*
Im[ZsZ)) = Im[Z; Z]) = Im[Z}(Zs + Z7)’] = 0.

Note that Im[Z} Z;] = O implies that there is no CP-even/CP-odd scalar mixing in the
diagonalization of the neutral scalar squared-mass matrix. Nevertheless, this is not a

sufficient condition for CP-conserving Higgs couplings.

Additional constraints arise when the Higgs-fermion couplings are included. If Z5[p“]?,
Zsp® and Z;p® (Q = U, D, E) are hermitian matrices, then the couplings of the
neutral Higgs bosons to fermion pairs are CP-invariant. Thus, if all the above conditions
are satisfied, then the neutral Higgs bosons are eigenstates of CP, and the only possible
source of CP-violation in the 2HDM is the unremovable phase in the CKM matrix K that

enters via the charged current interactions mediated by either W+ or H* exchange.

*Since one of the scalar potential minimum conditions yields Y3 = —%ZG’UQ, no separate condition

involving Y3 is required.



‘ The significance of tan (3 I

So far, tan 3 has been completely absent from the Higgs couplings. This must be so,
since tan 3 is basis-dependent in a general 2HDM. However, a particular 2HDM may
single out a preferred basis, in which case tan 8 would be promoted to an observable. To
simplify the discussion, we focus on a one-generation model, where the Yukawa coupling

matrices are simply numbers.

As an example, the MSSM Higgs sector is a type-ll 2HDM, 1.e., 77? = né) = 0.

A basis-independent condition for type-ll is: n?*naU = 0.

In the preferred basis,
b = (cos B, sinBe®) and w = (—sin Be *, cos B). Evaluating k% = o* - n% and
p®? = w* - n@ in the preferred basis, it follows that:

pD* l‘i,'U

—’if
e “tanp = — = ;
b=~ 0

where k% = v/2mg/v. These two definitions are consistent if k”xY + pP*p¥ = 0'is

satisfied. But this is equivalent to the type-ll condition, né)*ng = 0.



Since pQ is a pseudo-invariant, we can eliminate & by rephasing 5. Hence,

"] kY
kD |pY|’

tan 8 =

with 0 < 8 < /2. Indeed, tan 3 is now a physical parameter, and the |pQ| are no

longer independent:

|PD| B ﬁmdtanﬁ |pU| B V2m, cot 3
v ’ V '

In the more general (type-11l) 2HDM, tan (3 is not a meaningful parameter. Nevertheless,

one can introduce three tan B-like parameters:’
K
tan By = —— tan 8, = —— tan B8, = ——

the last one corresponding to the Higgs-lepton interaction. In a type-lIl 2HDM, there is

no reason for the three parameters above to coincide.

f Interpretation: In the Higgs basis, up and down-type quarks interact with both Higgs doublets. But, clearly there exists
some basis (i.e., a rotation by angle By, from the Higgs basis) for which only one of the two up-type quark Yukawa couplings is

non-vanishing. This defines the physical angle Gq,.



The MSSM Higgs sector is a type-lll 2HDM

The tree-level Higgs potential of the MSSM satisfies:

>\1=>\2=—>\345=%(g2+g/2),>\4=—%92,%:)\6:)\7:0-

But, one-loop radiative corrections generate corrections to these relations, due to
SUSY-breaking. FE.g., at one-loop, A5, Ag, A7 # O.

For MSSM Higgs couplings to fermions, Yukawa vertex corrections modify the effective
Lagrangian that describes the coupling of the Higgs bosons to the third generation quarks:

~ Lo = €ij | (b + Shp)bRHQY, + (hi + 5he)TRQY HY| +AhybrQY Hyy ™+ AR TrQE Hy +h.c.
Indeed, this is a general type-lIll model. For example, in some MSSM parameter regimes
(corresponding to large tan 8 and large supersymmetry-breaking scale compared to fu),i

2

h 2 2 2
16;2MAt I(Mi,, M, 1)

200

Ahb ~ hb

2 2 2
T :U’M§ I(MZ)l? M527 Mg) +

This leads to a modification of the tree-level relation between m and hg. In addition, it

leads to a splitting of “effective” tan (3-like parameters tan 3, and tan 3.

! I(a,b,c) = [abln(a/b) 4+ bcln(b/c) + caln(c/a)]/(a — b)(b — ¢)(a — ¢).



For illustrative purposes, we neglect CP violation in the following simplified discussion.

The tree-level relation between mp and hy is modified:

hyv (1 )
my = —— cos B(1 + Ay),
’ V2 ’

where Ay, = (Ahy/hy) tan 8. That is, Ay is tan B-enhanced, and governs the leading
one-loop correction to the physical Higgs couplings to third generation quarks. In typical

models at large tan B, Ay can be of order 0.1 or larger and of either sign.

In the approximation scheme above (keeping only the tan -enhanced terms),

vpP tan 3 tan 3 V2 my tan 3
~ — an 3; = a :
V2m, | 144y YT opU 1 — tan B (Ahy/hy)

tan ﬁb =

Thus, supersymmetry-breaking loop-effects can yield observable differences between
tan B-like parameters that are defined in terms of basis-independent quantities. In
particular, the leading one-loop tan 3-enhanced corrections are automatically incorporated

Into:
Ty L%
Ay — _v tan Gy, gatt = _v cot (3 .



‘ The decoupling limit |

The decoupling limit corresponds to the limiting case in which one of the two Higgs
doublets of the 2HDM receives a very large mass and is therefore decoupled from the
theory. This can be achieved by assuming that Y3 > v* and |Z;| < O(1) [for all 4].
The effective low energy theory is a one-Higgs-doublet model that corresponds to the
Higgs sector of the Standard Model. We shall order the neutral scalar masses according to
m1 < ma 3 and define the invariant Higgs mixing angles accordingly. Thus, we expect
one light CP-even Higgs boson, hi, with couplings identical (up to small corrections) to

those of the Standard Model (SM) Higgs boson. In particular,®

Zs|v? Zs|v?
mgzzlvuo(' 6'5), mg:A2+o(' 6';),
ms ms
2 2 2 —2i0 |ZG|U2 2 1 2
my, = A"+ v"Re(Zse “72) + O 5 : my+ = Yo + 5230 .
3

Hence, m; < mo >~ m3 >~ my+.

SRecall that: A% = Y + $[Z3 + Z4 — Re(Zse™ 2923)]02.



Finally, the invariant mixing angles are given by:

v2Re(Zg e "23)
S12 =
2 _ 2
ms — mj

|ZG|2’U4
1+ 0 - <1,
ms
|ZG|2”U4
1+ 0 - <1,
ms
|Zﬁ|2’U4
1+ 0O 1 <L 1.
ms

In the exact decoupling limit, these quantities are all zero. However, the identity:

—0?Im(Zg e~ "023)
§13 —
2 2

—? Im|[(Zs e_i923)2]

2 2

Im(Zs e 2"723) =
mg — My

Im (75 27) = 2 Re(Zse "% Re(Zg e /2) Im(Zg e~ ")

— Tm(Zse 2i023) {[Re(26 e 92312 _ [Im(Zg e—i923)]2} .

implies that Im(Zg‘Zg) need not be particularly small in the decoupling limit. Therefore
in the decoupling limit, the properties of h; approach those of the neutral CP-even
Standard Model Higgs boson. In contrast, ho and hjs are states of indefinite CP (i.e.,

strongly-mixed linear combinations of H and A).

YAnother identity, Im(Zng) 00 = 23130%3312012 (m% — m%)(m% — m%)(m% — m%) yields the

same conclusion.



‘ Lessons and future work I

e If phenomena consistent with the 2HDM are found, we will not know a priori the
underlying structure that governs the model. In this case, one needs a model-independent

analysis of the data that allows for the most general CP-violating Model-III.

e Instead of claiming that you have measured tan 8 (which can only be done in the
context of a simplified version of the model), measure the physical parameters of the
model. Examples include the tan 3-like parameters introduced in the one-generation
model. (For three generations, the formalism becomes more complicated. However,
one has good reason to assume that the third generation quark—Higgs Yukawa couplings

dominate.)

e Which tan (3-like parameters will be measured in precision Higgs studies at the ILC?
How can one best treat the full three-generation model to one-loop order? What

simplifications can be exploited in the MSSM?

e Compute the one-loop radiative corrections to various Higgs processes in terms of the

physical tan (3-like parameters in the MSSM.



