Measuring the parameters of the Lagrangian

Theory Rally
Vancouver Linear Collider Workshop
Vancouver, 07/21/06

Dirk Zerwas LAL Orsay

- Introduction
- SUSY measurements
- Reconstruction of the fundamental parameters
- Conclusions

Introduction

Supersymmetry:

- solves hierarchy problem
- proper extension of Lorentz algebra
- has a light Higgs boson mass (EW data)
- promises rich collider phenomenology @TeVscale

LHC and the ILC will provide a wealth of measurements:

- masses
- mass differences
- cross sections
- branching ratios
- mixtures of all of the above and more.....

spin-0	spin-1/2	spin-1
Squarks:	q	
$\widetilde{\mathbf{q}}_{\mathbf{R}},\widetilde{\mathbf{q}}_{\mathbf{L}}$		
	Gluino: g̃	g
Sleptons:	l	
$\widetilde{m{\ell}}_{ m R}, \widetilde{m{\ell}}_{ m L}$		
h,H,A	Neutralino	Ζ, γ
	$\chi_{i=1-4}$	
\mathbf{H}^{\pm}	Charginos:	\mathbf{W}^{\pm}
	$\chi^{\pm}_{i=1-2}$	

Transform measurements of (s)particle properties into measurements of fundamental parameters

Need to specify a model (more or less constrained):

• mSUGRA (top-down) and MSSM (bottom-up) with conservation of R-parity

Main difficulties:

- need predictions for all observables matching theoretical and experimental precision
- observables sensitive to several parameters: correlations, error propagation

Thus studies to determine supersymmetric parameters from measurements need brain power and sophisticated tools:

- Mass spectra generated by SOFTSUSY, SUSPECT, SPHENO
 - typically 2-loop RGEs, radiative corrections to particle masses, dominant 2-loop Higgs mass contributions
- Branching ratios by MSMLIB, SPHENO, SDecay
 - 2, 3, 4 body-decays (including transition 2-3), including QCD corrections and EW corrections, 1-loop SUSY-QCD
- e+e- cross sections (polarized) by SPHENO
 - ISR and gluon-exchange corrections
- NLO proton cross sections by Prospino2.0

Putting it all together (error propagation, search for minima etc):

FITTINO: P. Bechtle, K. Desch, P. Wienemann with W. Porod

SFITTER: R. Lafaye, T. Plehn, D. Z.

P. Skands et al., SUSY Les Houches accord (SLHA), Interfacing SUSY spectrum calculators, decay packages, and event generators, JHEP 0407 (2004) 036

SPS1a and SPA1

 $m_0 = 100 GeV$ $m_{1/2} = 250 GeV$ $A_0 = -100 GeV$ $tan\beta = 10$ $sign(\mu) = +$ favourable for LHC and ILC (Complementarity)

$$m_0 = 70 \text{GeV}$$

$$A_0 = -300 \text{GeV}$$
 compatible with Ωh^2

Moderately heavy gluinos and squarks

"Physics Interplay of the LHC and ILC" Editor G. Weiglein hep-ph/0410364

Heavy and light gauginos

 $\widetilde{\tau_1}$ lighter than lightest χ^{\pm} :

- χ^{\pm} BR 100% $\tau \tilde{v}$
- χ_2 BR 90% $\tau \tilde{\tau}$
- cascade:

$$\widetilde{q}_L \rightarrow \chi_2 q \rightarrow \widetilde{\ell}_R \ell q \rightarrow \ell \ell q \chi_1$$
visible

LHC:

Abundant production of gluinos and squarks decaying through cascade decays via neutralinos and sleptons

Leptons at the LHC: electrons and muons

$$\begin{split} \left(m_{ll}^{2}\right)^{\text{edge}} &= \frac{\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{l}_{R}}^{2}} \\ \left(m_{qll}^{2}\right)^{\text{edge}} &= \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{\chi}_{2}^{0}}^{2}} \\ \left(m_{ql}^{2}\right)^{\text{edge}}_{\min} &= \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{l}_{R}}^{2}\right)}{m_{\tilde{\chi}_{2}^{0}}^{2}} \\ \left(m_{ql}^{2}\right)^{\text{edge}}_{\max} &= \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{l}_{R}}^{2}} \\ \left(m_{qll}^{2}\right)^{\text{thres}} &= \left[\left(m_{\tilde{q}_{L}}^{2} + m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right) \\ &- \left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\sqrt{\left(m_{\tilde{\chi}_{2}^{0}}^{2} + m_{\tilde{l}_{R}}^{2}\right)^{2}\left(m_{\tilde{l}_{R}}^{2} + m_{\tilde{\chi}_{1}^{0}}^{2}\right)^{2} - 16m_{\tilde{\chi}_{2}^{0}}^{2}m_{\tilde{l}_{R}}^{4}m_{\tilde{\chi}_{1}^{0}}^{2}} \\ &+ 2m_{\tilde{l}_{R}}^{2}\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left[\left(4m_{\tilde{l}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\right] \\ &+ 2m_{\tilde{l}_{R}}^{2}\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\right] \\ &+ 2m_{\tilde{l}_{R}}^{2}\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left[\left(4m_{\tilde{l}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\right] \\ &+ 2m_{\tilde{l}_{R}}^{2}\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left[\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\right] \\ &+ 2m_{\tilde{l}_{R}}^{2}\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\right] \\ &+ 2m_{\tilde{l}_{R}}^{2}\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{l}_{R}}^{2}\right) \\ &+ 2m_{\tilde{l}_{R}}^{2}\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\right) \\ &+ 2m_{\tilde{l}_{R}}^{2}\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{l}_{R}}^{2}\right$$

Mass determination for 300fb⁻¹ (thus 2014) LHC: Toy MC from edges, thresholds to masses

		Errors		
Variable	Value (GeV)	Stat. (GeV)	Scale (GeV)	Total
$m_{\ell\ell}^{max}$	77.07	0.03	0.08	0.08
$m_{\ell\ell q}^{max}$	428.5	1.4	4.3	4.5
mlow	300.3	0.9	3.0	3.1
$m_{\ell q}^{high}$	378.0	1.0	3.8	3.9
$m_{\ell\ell q}^{min}$	201.9	1.6	2.0	2.6
$m_{\ell\ell b}^{min}$	183.1	3.6	1.8	4.1
$m(\ell_L) - m(\tilde{\chi}_1^0)$	106.1	1.6	0.1	1.6
$m_{\ell\ell}^{max}(\tilde{\chi}_4^0)$	280.9	2.3	0.3	2.3
$m_{\tau\tau}^{max}$	80.6	5.0	0.8	5.1
$m(\tilde{g}) - 0.99 \times m(\tilde{\chi}_{1}^{0})$	500.0	2.3	6.0	6.4
$m(\tilde{q}_R) - m(\tilde{\chi}_1^0)$	424.2	10.0	4.2	10.9
$m(\tilde{g}) - m(\tilde{b}_1)$	103.3	1.5	1.0	1.8
$m(\tilde{g}) - m(\tilde{b}_2)$	70.6	2.5	0.7	2.6

Masses: from endpoint measurements

Masses: threshold cross section measurement

"hidden essential measurements": particle spin "hidden calculations": Xsection for mass determination

Polesello et al: use of χ_1 from ILC (high precision) in LHC analyses improves the mass determination

	Mass, ideal	"LHC"	"LC"	"LHC+LC"
$\tilde{\chi}_1^{\pm}$	179.7		0.55	0.55
$\tilde{\chi}_2^{\pm}$	382.3	_	3.0	3.0
$\tilde{\chi}_1^0$	97.2	4.8	0.05	0.05
$\tilde{\chi}_2^0$	180.7	4.7	1.2	0.08
$\tilde{\chi}^0_3$	364.7		3-5	3-5
$\tilde{\chi}_4^0$	381.9	5.1	3-5	2.23
\tilde{e}_R	143.9	4.8	0.05	0.05
\tilde{e}_L	207.1	5.0	0.2	0.2
$\tilde{\nu}_e$	191.3	_	1.2	1.2
$\tilde{\mu}_R$	143.9	4.8	0.2	0.2
$\tilde{\mu}_L$	207.1	5.0	0.5	0.5
$\tilde{\nu}_{\mu}$	191.3	_		
$\tilde{\tau}_1$	134.8	5-8	0.3	0.3
$\tilde{\tau}_2$	210.7	_	1.1	1.1
$\tilde{\nu}_{\tau}$	190.4	_	_	_
\tilde{q}_R	547.6	7-12	_	5-11
\tilde{q}_L	570.6	8.7	_	4.9
\tilde{t}_1	399.5		2.0	2.0
\tilde{t}_2	586.3		_	
\tilde{b}_1	515.1	7.5	_	5.7
\tilde{b}_2	547.1	7.9		6.2
\tilde{g}	604.0	8.0	-	6.5
h^0	110.8	0.25	0.05	0.05
H^0	399.8		1.5	1.5
A^0	399.4		1.5	1.5
H^{\pm}	407.7	_	1.5	1.5

Lagrangian@GUT scale: mSUGRA

mSUGRA advantage: few parameters, testing

ground for studies of principles

disadvantage: starts at GUT scale and adds RGE extrapolation, not the most general Lagrangian

Two separate questions:

- do we find the right point?
 - need and unbiased starting point
- what are the errors?

25 - 10 - 15 - 10 - 150 MO	M1/2
tanbeta tanbeta Entries 308 Mean 10.19 RMS 1.548 10 0 2 4 6 8 10 12 14 16 18 20 tanbeta	A0 Entries 308 Mean -100.5 S2.45

	SPS1a	Start
m_0	100	1TeV
m _{1/2}	250	1TeV
tanβ	10	50
A0	-100	0GeV

Sign(µ) fixed

- Fittino:
 - start from tree level formula
 - MINUIT
 - Simulated Annealing

~300 toy experiments: convergence OK with MINUIT alone for LHC (largest errors)!

Lagrangian@GUT scale: the precision for mSUGRA

	SPS1a	ΔLHC	ΔILC	ΔCLIC	ΔLHC+ILC
\mathbf{m}_{0}	100	3.9	0.09	0.08	0.08
m _{1/2}	250	1.7	0.13	0.13	0.11
tanß	10	1.1	0.12	0.12	0.12
A0	-100	33	4.8	4.6	4.3

Sign(µ) fixed

errors on errors typically ~10%

- Toy datasets (Gaussian Smearing)
- perform ~1000 experiments
- errors from LHC %
- errors from ILC 0.1%
- LHC+ILC: slight improvement
- low mass scalars dominate m₀
- "CLIC": add squark measurement at 0.5% (2-4 times better than LHC) to ILC measurements
- improves slightly m₀ and A0 wrt ILC

Masses versus Edges (LHC)

			Errors	
Variable	Value (GeV)	Stat. (GeV)	Scale (GeV)	Total
$m_{\ell\ell}^{max}$	77.07	0.03	0.08	0.08
$m_{\ell\ell q}^{max}$	428.5	1.4	4.3	4.5
$m_{\ell q}^{low}$	300.3	0.9	3.0	3.1
hish	378.0	1.0	3.8	3.9
$m_{\ell q}^{nign} \ m_{\ell \ell q}^{min}$	201.9	1.6	2.0	2.6
$m_{\ell\ell b}^{min}$	183.1	3.6	1.8	4.1
$m(\ell_L) - m(\tilde{\chi}_1^0)$	106.1	1.6	0.1	1.6
$m_{\ell\ell}^{max}(\tilde{\chi}_4^0)$	280.9	2.3	0.3	2.3
$m_{\tau\tau}^{max}$	80.6	5.0	0.8	5.1
$m(\tilde{g}) - 0.99 \times m(\tilde{\chi}_{1}^{0})$	500.0	2.3	6.0	6.4
$m(\tilde{q}_R) - m(\tilde{\chi}_1^0)$	424.2	10.0	4.2	10.9
$m(\tilde{g}) - m(\tilde{b}_1)$	103.3	1.5	1.0	1.8
$m(\tilde{g}) - m(\tilde{b}_2)$	70.6	2.5	0.7	2.6

	SPS1a	ΔLHC masses	ΔLHC edges	ΔLHC top1GeV
m_0	100	3.9	1.2	1.28
m _{1/2}	250	1.7	1.0	1.0
tanβ	10	1.1	0.9	1.1
A0	-100	33	20	24
top	175	-	-	0.8

Sign(µ) fixed

- use of edges improves parameter determination!
- edges to masses is not a simple "coordinate" transformation:

Δm_0	Effect on ml _R	Effect on mll
1GeV	0.7/5=0.14	0.4/0.08=5

Similar effect for m_{1/2}

- need correlations to obtain the ultimate precision from masses
- the standard model is important: top quark mass precision LHC has a non-negligeable impact on SUSY parameter determination (ILC needs order of magnitude: mtop~0.12GeV affects A0....)

Negative μ mirror solution?

- mu discrete variable, therefore not suitable for fit
- fix mu to opposite sign, start from "nominal" values

	SPS1a	LHC masses	ΔLHC
\mathbf{m}_{0}	100	101.4	1.8
m _{1/2}	250	249.8	0.01
tanß	10	13.8	0.002
A0	-100	-150.2	1.7
μ	+	-	

	Δχ² increase (central values)
LHC masses	4
LHC edges	63
ILC	412
LHC+ILC	1400

LHC: chi2/pdf well separated (edges) 300 Experiments

Wrong solution might exist, but

- vary measurements with errors, no overlap in χ^2/pdf
- very thin region (all errors "atypical")
- "atypical" errors in more than 50% of the cases
- correlation matrix untypical
- LHC: χ_2 dominates $\Delta \chi^2$ increase
- strongest discriminating power for LHC+ILC

Total Error and down/up effect

Theoretical errors (mixture of c2c and educated guess):

Higgs	sleptons	Squarks,gluinos	Neutralinos, charginos
3GeV	1%	3%	1%

Higgs error: Sven Heinemeyer et al.

Including theory errors reduces sensitivity by an order of magnitude

	SPS1a	SoftSUSYup (Snowmass)	SoftSUSYup (Vancouver)	ΔLHC+LC (2006)
m_0	100	95.2	96.8	1.2
m _{1/2}	250	249.8	250.7	0.6
tanβ	10	9.82	8.4	0.5
A0	-100	-97	-109	15

	SPS1a	ΔLHC+ ILCexp	ΔLHC+ ILCth
m_0	100	0.08	1.2
m _{1/2}	250	0.11	0.7
tanβ	10	0.12	0.7
A0	-100	4.3	17

Running down/up

- spectrum generated by SUSPECT
- fit with SOFTSUSY (B. Allanach)
- central values shifted (natural)
- m₀ improved (RGE)
- overall barely compatible 1-3σ
- theoretical errors are important

Important task SPA project: precision of theoretical calculations

The LHC neutralino enigma

χ_1	97.2	4.8
χ_2	180.8	4.7
χ ₃		
χ_4	381.9	5.1

Declaration of bias: 2/3 of Sfitter are in ATLAS, but:

• LHC measures the neutralino index????

• permute: χ_4 with χ_3

	SPS1a	LHCmasses	ΔLHCmasses	LHCedges	ΔLHCedges
\mathbf{m}_{0}	100	99.6	4	100.3	2.6
m _{1/2}	250	250.1	1.7	248.8	2.1
tanß	10	8.1	0.8	7.7	0.73
A 0	-100	-196	30	-186	39
top	175	175	1	175.5	0.75
$\chi^2/p.d.f$	0	-	0.2/16	-	2/11

Exchanging chi3 and chi4 leads to a secondary minimum

- M0 and M1/2 ok, but tanbeta and A0 more than $2-3\sigma$ from nominal values
- so in principle need ILC to see which neutralino are present....
- the predicted mass of χ_4 is about 400GeV
- the predicted branching ratios would lead us to expect more χ_4 than χ_3 in the measurement channel
- general rule: beware of the "hidden" measurements......

SLHC+ILC

A likely scenario is concurrent running ILC plus luminosity upgrade of LHC

SPS1a results LHC 300fb⁻¹

- SLHC 3000fb⁻¹
- Some improvement
- limitation: energy scale

			Errors	
Variable	Value (GeV)	Stat. (GeV)	Scale (GeV)	Total
$m_{\ell\ell}^{max}$	77.07	0.03	0.08	0.08
$m_{\ell\ell q}^{max}$	428.5	1.4	4.3	4.5
$m_{\ell q}^{low}$	300.3	0.9	3.0	3.1
	378.0	1.0	3.8	3.9
$m_{\ell q}^{mign} \ m_{\ell \ell q}^{min}$	201.9	1.6	2.0	2.6
$m_{\ell\ell b}^{min}$	183.1	3.6	1.8	4.1
$m(\ell_L) - m(\tilde{\chi}_1^0)$	106.1	1.6	0.1	1.6
$m_{\ell\ell}^{max}(\tilde{\chi}_4^0)$	280.9	2.3	0.3	2.3
$m_{\tau\tau}^{max}$	80.6	5.0	0.8	5.1
$m(\tilde{g}) - 0.99 \times m(\tilde{\chi}_{1}^{0})$	500.0	2.3	6.0	6.4
$m(\tilde{q}_R) - m(\tilde{\chi}_1^0)$	424.2	10.0	4.2	10.9
$m(\tilde{g}) - m(\tilde{b}_1)$	103.3	1.5	1.0	1.8
$m(\tilde{g}) - m(\tilde{b}_2)$	70.6	2.5	0.7	2.6

SLHC
0.08
4.3
3
3.8
2.1
2.1
0.5
0.8
1.8
6
5.3
1.1
1.1

	SPS1a	ΔLHC before	ΔSLHC	ΔLHC+ILC	ΔSLHC+ILC
m_0	100	1.2	0.7	0.08	0.07
m _{1/2}	250	1.0	0.6	0.11	0.11
tanβ	10	0.9	0.7	0.12	0.12
A0	-100	20	10	4.4	3.8

SLHC:

- factor 2 improvement
- SLHC+ILC marginal wrt LHC+ILC

Prediction of Ωh^2 at LHC+ILC

Translate determination of SUSY parameters into "Dark matter" with micrOMEGAs (Bélanger et al.):

- dependence on m1/2, A0 small
- dependence on tanβ, m0 larger

• LHC: $\Omega h^2 = 0.1906 \pm 0.0033$

• LHC+ILC: $\Omega h^2 = 0.1910 \pm 0.0003$

• win order of magnitude (if theory errors are under control)

Between MSUGRA and the MSSM @LHC

Start with MSUGRA, then loosen the unification criteria,

less restricted models defined at the GUT (!) scale: SFitter

SFitter-team and Sabine Kraml in Les Houches BSM hep-ph/0602198

	SPS1a	LHC	ΔLHC
m_0^{sleptons}	100	100	4.6
$m_0^{\rm squarks}$	100	100	50
$m_{\rm H}^{2}$	10000	9932	42000
m _{1/2}	250	250	3.5
tanβ	10	9.82	4.3
A0	-100	-100	181

- Higgs sector undetermined
 - only h (m_Z) seen
- slepton sector the same as MSUGRA
 - ullet light scalars dominate determination of m_0
- smaller degradation in other parameters, but still % precision

	SPS1a	LHC	ΔLHC
$M_0^{1,2gen}$	100	100	4.4
$M_0^{t,b}$	100	100	59
M_0^{stau}	100	100	14
$m_{\rm H}^{2}$	10000	10082	80000
m _{1/2}	250	250	2.6
tanβ	10	10	7.8
A0	-100	-100	323

The highest mass states do not contain the maximum information in the scalar sector, but they do in the Higgs sector!

MSSM

Parameter	"True" value	Fit value	Uncertainty	Uncertainty
			(exp.)	(exp.+theor.)
$\tan \beta$	10.00	10.00	0.11	0.15
μ	400.4 GeV	$400.4~\mathrm{GeV}$	$1.2 \; \mathrm{GeV}$	$1.3 \; \mathrm{GeV}$
X_	-4449. GeV	-4449. GeV	$20. \mathrm{GeV}$	29. GeV
$M_{\tilde{e}_{P}}$	$115.60~{ m GeV}$	$115.60~\mathrm{GeV}$	$0.13~{ m GeV}$	$0.43~{ m GeV}$
$M_{\tilde{\tau}_R}$	$109.89 \; \mathrm{GeV}$	$109.89 \; { m GeV}$	$0.32~{ m GeV}$	$0.56~{ m GeV}$
$M_{\tilde{e}_L}$	$181.30 \; \mathrm{GeV}$	$181.30~\mathrm{GeV}$	$0.06~{ m GeV}$	$0.09~{ m GeV}$
$M_{\tilde{\tau}}$	$179.54~\mathrm{GeV}$	$179.54 \; { m GeV}$	$0.12~{ m GeV}$	$0.17~{ m GeV}$
X_{t}	$-565.7 \; {\rm GeV}$	$-565.7~\mathrm{GeV}$	$6.3~{ m GeV}$	$15.8~{ m GeV}$
$X_{\rm b}$	-4935. GeV	$-4935. \; \mathrm{GeV}$	$1207. \; { m GeV}$	1713. GeV
$M_{\tilde{q}_R}$ M_{-}	503 CoV	504 CoV	12 CeV	16 CoV
$M_{\tilde{i}}$	$497.~\mathrm{GeV}$	$497. \mathrm{GeV}$	$8.~{ m GeV}$	$16.~{ m GeV}$
$M_{\tilde{t}_R}$	$380.9~{\rm GeV}$	$380.9~{\rm GeV}$	$2.5~{ m GeV}$	$3.7~{ m GeV}$
$M_{\tilde{q}_L}$	523. GeV	$523.~\mathrm{GeV}$	$3.2 \; \mathrm{GeV}$	$4.3 \; \mathrm{GeV}$
$M_{\tilde{t}_L}$	$467.7~\mathrm{GeV}$	$467.7~\mathrm{GeV}$	$3.1 \; \mathrm{GeV}$	$5.1 \; \mathrm{GeV}$
M_1	$103.27 { m GeV}$	$103.27~\mathrm{GeV}$	$0.06~{ m GeV}$	$0.14~{ m GeV}$
M_2	$193.45~\mathrm{GeV}$	$193.45~\mathrm{GeV}$	$0.08~{ m GeV}$	$0.13~{ m GeV}$
M_3	$569.~{ m GeV}$	$569.~{ m GeV}$	$7.~{ m GeV}$	$7.4~{ m GeV}$
$m_{ m A_{run}}$	312.0 GeV	$311.9~{\rm GeV}$	$4.3 \; \mathrm{GeV}$	$6.5~{ m GeV}$
$m_{ m t}$	$178.00~{ m GeV}$	$178.00~{ m GeV}$	$0.05~{ m GeV}$	$0.12~{ m GeV}$
Correspond	ing values for the	trilinear coupling	gs:	
A_{τ}	$-445.~\mathrm{GeV}$	-445. GeV	$40.~{\rm GeV}$	52. GeV
$A_{ m t}$	$-526.~\mathrm{GeV}$	$-526.~\mathrm{GeV}$	$6.~{ m GeV}$	$16. \mathrm{GeV}$
$A_{\rm b}$	$-931.~\mathrm{GeV}$	$-931.~\mathrm{GeV}$	$1184.~{ m GeV}$	$1676.~\mathrm{GeV}$
	χ^2 for unsm	eared observable	s: 2.1×10^{-5}	

- good precision for LHC+ILC
- theoretical errors impact strongly the precision

- MSSM with 18 parameters:
- no intergenerational mixing
- no mixing between first 2 generations
- universality of same type sfermion parameters of 1st and 2nd generation

Additional measurements

- branching ratio ratios (Higgs LHC)
- cross sections ILC
- branching ratios ILC + mixtures

MSSM

CLIC

 ΠC

					CLIC		CLIC
			LHC	ILC '	CLIC	LHC	LHC
			LHC	ILC	CLIC	ILC+LHC	CLIC+LHC
TANB		9.9999	79	1.4	1.8	1.1	1.3
M1		101.4	16	0.2	0.26	0.2	0.21
M2		191.6	47	0.9	1.1	0.6	0.6
M3		586.7	J <u>33</u>	IXED	408	8	7.9
MSTAUL		195.89	FIXED	2.7	2.5	2.4	3
MSTAUR		133.25	9	3.5	3.2	3	4
MSMUONL		195.5	5.7	0.5	0.5	0.5	0.5
MSMUONR		136	6.0	0.2	0.2	0.2	0.2
MSELECL		195.5	5.7	0.2	0.2	0.2	0.2
MSELECR		136	6.0	0.07	0.07	0.06	0.07
MSQL3GEN		497.1	J <u>32</u>	39	12	39	11
MSTOPR		421.62	FIXED	24	13	21	11
MSBOTTOMR		522.5	43	FIXED	14	38	12
MSQL2GEN		545.9	13.6	FIXED	5.2	7.1	3.6
MSCHARMR		527.78	20	FIXED	5.6	16	5.1
MSSTRNGR		525.93	20	FIXED	5.6	16	5.1
MSQL1GEN		545.9	13.6	FIXED	5.2	7.1	3.6
MSUPR		527.76	20	FIXED	5.6	16	5.1
MSDOWNR		525.96	J <u>20</u>	FIXED	5.6	16	5.1
ASTAU		-229.12	FIXED	939	787	641	833
ASTOP		-494.63	1547	17	24	12	17
ASBOTTOM		-795.29	FIXED	FIXED	5907	19290	5685
MA		398.86	FIXED	0.9	0.9	0.9	0.9
MU	١	357	45	2.3	2.3	1.9	1.8

MSSM which MSSM??
24 parameters at the EW scale

SFitter choice: do not unify 1st and 2nd generation: data should tell us ...

LHC or ILC alone:

- certain parameters must be fixed
- E.Turlay and SFitter: study of syst. Error due to fix (bias)

LHC+ILC:

- all parameters fitted
- several parameters improved

CLIC wrt ILC:

- no fixed parameters with good precision LHC+CLIC
- improvement essentially in the squark sector with factor 2-3 on errors as expected from the mass measurement improvement wrt LHC

Note: if at LHC mSUGRA has a secondary minimum, MSSM will have even more.....

Can the LHC do more in the MSSM?

- from edges cinematically to masses
- Cross section prediction (Prospino2.0) for squarkR accurate to about 10%
- Deviation of cross section measurement ratio is 400% wrt to single squark
- thus 4 pseudo measurements for every measurement involving squarks (equivalent to unification of breaking terms)
- LHC separates well electrons and muons: enough measurements to do full fit

tanb	10	10	1.6	MselecL	195.5	195.5	2.5	MSQL1	545.9	545.9	7.9
M1	101.4	101.4	0.7	MselecR	136	136	0.9	MsuR	527.9	527.8	23
M2	191.6	191.6	0.6	MSQL3	497.1	497.1	13	MsdR	525.8	526	23
M3	586.7	586.7	8.7	MstopR	421.6	421.6	217	Astau	-251.7	-229	27000
MstaL	194.7	195.9	5600	MsbR	522.5	522.5	14	Astop	-494.6	-494.6	83
MstaR	133.5	133.3	1400	MSQL2	545.9	545.9	7.9	Asb	-795.3	-795.3	5733
MsmL	195.5	195.5	2.5	MscR	527.9	527.8	23	MA	398.9	398.9	913
MsmR	136	136	0.9	MssR	525.8	526	23	mu	357	357	4

Caveats:

- serious experimental estimate of Xsection uncertainty needed (especially SquarkL)
- net effect wrt stat+syst error of fixing should be small (to be investigated)

Extrapolation to the High Scale

130 % / 180 % A_b precision:

50 % A_b precision:

Blair et al., Fittino with W. Porod:

- extrapolation shows unification of soft breaking params
- A_b difficult to measure, search for new observables

Beyond SPS1a @LHC and ILC

No restriction to SPS1a $m_0 = 1400 \text{ GeV}$ $m_{1/2} = 180 \text{ GeV}$ $A_0 = 700 \text{ GeV}$ $\tan \beta = 51 \mu > 0$

LHC Measurements:

- Higgs masses h,H,A
- mass difference χ_2 - χ_1
- mass difference \tilde{g} χ_2 Sufficient for MSUGRA ILC:
- Higgs mass h,H,A
- gauginos

SFitter with P. Gris, L.Serin, L. Tompkins in Les Houches BSM hep-ph/0602198

Dominant Processes at the LHC:

•
$$g + g \rightarrow \tilde{g} + \tilde{g}(50\%)$$

•
$$q + \bar{l}q \rightarrow \tilde{\chi}_2^0 + \tilde{\chi}_1^{\pm}(20\%)$$

•
$$f + \bar{f} \to \tilde{\chi}_1^- + \tilde{\chi}_1^+ (10\%)$$

Uncertainties:

- b quark mass
- t quark mass
- Higgs mass prediction
- h mass determines m0
- H,A tanß
- essential to take t, b mass and theory errors into account

LHCLC: don't forget Mtop@LC

ΔILC+ AILCexp **ALHC**exp **ΔLHC ALHC**all **Egret LHC**exp $\Delta mt=1$ 7.3 1400 **6.8 50** 95 480 $\mathbf{m}_{\mathbf{0}}$ 180 0.1 0.1 2.3 2.3 11 $m_{1/2}$ tanß 51 0.04 0.03 0.3 2.8 3 14 $\mathbf{A0}$ 700 13 181 300 656

Similar point studied in MSSM: Desch et al. hepph/0607104

Conclusions

- Sophisticated tools such as Fittino and SFitter will be essential to determine the fundamental parameters of Supersymmetry:
 - mass differences, edges and thresholds are more sensitive than masses
 - the LHC will be able to measure the parameters at the level %
 - ILC will improve errors by a factor 10
 - LHC+ILC reduces the model dependence
 - intermediate models (beyond MSUGRA before MSSM) can be studied
 - SLHC reduces LHC errors by factor 2
 - MSSM can be probed at both colliders with sensitivities to different regions of the parameter space
- Future Studies (esp MSSM) with M.Rauch: MCMC and Markov Chains for characterization of secondary minima (a la Allanach hep-ph/0601089)
- The SPA project can help to understand differences between predictions of observables
- Above all that: it's difficult, exciting, therefore hope for an early discovery of SUSY at the LHC soon.....