Radiative Corrections to the Higgs Production at the ILC

Hou Hongsheng Carleton University Ottawa, Canada

Outline

- Higgs production at the ILC
- Determination of the Higgs properties at the ILC
- Associated production with a pair of top-quarks
 - \blacksquare EW corrections to $e^+e^- o t\bar{t}h$ in SM
 - EW corrections to $e^+e^- \rightarrow t\bar{t}h^0$ in MSSM
- EW corrections to $e^+e^- \rightarrow hhZ$
- Associated production with a pair of Z-bosons

$$e^+e^- \rightarrow ZZh$$

Summary

Higgs production at LC

- The main Higgs production mechanisms at LC
 - Higgs-strahlung $e^+e^- \rightarrow Z^* \rightarrow Zh$
 - Gauge boson fusion

$$e^+e^- \rightarrow \nu \overline{\nu} W^*W^* \rightarrow \nu \overline{\nu} + h$$

 $e^+e^- \rightarrow e^+e^-Z^*Z^* \rightarrow e^+e^- + h$

- \blacksquare Radiation off top quarks $e^+e^- \rightarrow t\bar{t}h$
- Double Higgs-strahlung

$$e^+e^- \rightarrow Z^* \rightarrow Z + hh$$

Higgs production at LC

From A. Djouadi hep-ph/0604109

Determination of Higgs properties

- Higgs Mass
- Higgs Spin-parity
- Higgs couplings to gauge bosons
- Higgs width and branching ratios
- Higgs couplings to top quarks
- Tri-linear Higgs self-coupling

Reach to a precision of several %

Theoretical predictions within percent level are necessary.

Radiative corrections to the Higgs production are important!

EW corrections to $e^+e^- \rightarrow t\bar{t}h$

- Motivation: this process is used to determine the top quark Yukawa coupling
- QCD corrections were well know hep-ph/9808433,9808443
- EW corrections have been presented by three groups
 - Y. You, et. al, hep-ph/0306036
 - G. Belanger, et. al, hep-ph/0307029
 - A. Denner, et. al, hep-ph/03070193

Tree level Feynman diagrams

Sample one-loop diagrams

Use FeynArts, FormCalc, LoopTools to Calculate the virtual correction. Use CompHep and Grace to calculate the photon emission.

Typical results $e^+e^- \rightarrow t\bar{t}h$

EW corrections to $e^+e^- \rightarrow t\bar{t}h^0$ in MSSM J.J. Liu hep-ph/0507293

- Higgs sector in MSSM
 - \Box Enlarged Two-Higgs-Doublets: H_1, H_2
 - \Box Five physical states: h^0, H^0, A^0, H^{\pm}
 - □ Input parameters: $\tan \beta = v_2 / v_1$, m_{A^0}
 - Other parameters at tree-level

$$\begin{array}{lll} M_{H^\pm}^2 &=& M_W^2 + M_{A^0}^2, \\ M_{H^0, N^0}^{2, \text{tree}} &=& \frac{1}{2} \left(M_{A^0}^2 + M_Z^2 \pm \sqrt{(M_{A^0}^2 + M_Z^2)^2 - 4 M_{A^0}^2 M_Z^2 \cos^2 2\beta} \right), \\ \cos 2\alpha &=& \cos 2\beta \frac{M_Z^2 - M_{A^0}^2}{M_{H^0}^2 - M_{h^0}^2}, & \sin 2\alpha = -\sin 2\beta \frac{M_Z^2 + M_{A^0}^2}{M_{H^0}^2 - M_{h^0}^2}. \end{array}$$

- Parameters in other sectors in MSSM
 - Sfermion sector:

 $M_{\tilde{Q}}, M_{\tilde{U}}, M_{\tilde{D}}, M_{\tilde{E}}, M_{\tilde{L}}$ are assumed to be degenerated as M_{susy}

The soft trilinear couplings are $A_q = A_l = A_f$

Chargino-neutralino sector:

soft-breaking gaugino mass parameters

 M_1, M_2 with GUT relation $M_1 = (5/3) \tan^2 \theta_W M_2$

Higgsino-mass parameter μ

EW corrections to $e^+e^- \rightarrow t\bar{t}h^0$ in MSSM

Tree-level Feynman diagrams

Sample one-loop diagrams

Results

TABLE I. Taking $M_{A^0} = 300$ GeV, the Born cross section σ_{tree} and the corrected cross section σ_{total} as well as the corresponding relative corrections δ_{total} for different values of $\tan \beta$ and c.m.s. energy \sqrt{s} .

\sqrt{s} [GeV]	tanβ	$M_{h^0}[{ m GeV}]$	$\sigma_{ m tree}[{ m fb}]$	$\sigma_{ m total}[{ m fb}]$	$\delta_{ m total}[\%]$
500	5	98.36	1.070746(1)	0.761(1)	-28.97(9)
	40	105.87	0.7086974(7)	, ,	` ′
800	5 40	98.36 105.87	3.808457(3) 3.515246(3)	3.105(5) 2.800(4)	-18.5(1) $-20.4(1)$
1000	5 40	98.36 105.87	3.065664(3) 2.889250(3)	2.568(4) 2.362(4)	-16.2(1) $-18.2(1)$
2000	5 40	98.36 105.87	1.073347(1) 1.041033(1)	0.924(2) 0.874(2)	-13.9(2) -16.1(2)

Dependence of the relative corrections on M_A

• Dependence of the relative corrections on $\tan \beta$

Dependence of the relative corrections on μ

■ Dependence of the relative corrections on M_{SUSY}

Dependence of the relative corrections on M₂

EW corrections to $e^+e^- \rightarrow hhZ$

- This process is used to determine Higgs selfcouplings and reconstruct the Higgs potential.
- Simulation showed a precision of about 10% on the total cross section can be reached with high integrated luminosity $\int \lambda = 2ab^{-1}$: hep-ex/0101028
- EW corrections to this process have been presented by two groups
 - R. Y. Zhang, et. al, hep-ph/0308203
 - □ G. Belanger, *et. al*, hep-ph/0309010

Tree level diagrams

Results to $e^+e^- \rightarrow hhZ$

The Born cross section σ_{tree} , the corrected cross section σ_{tot} and the full $\mathcal{O}(\alpha_{\text{eW}})$ electroweak relative correction δ_{tot} for various Higgs boson mass and c.m. energy values

√s [GeV]	m_H [GeV]	σ_{tree} [fb]	σ_{tot} [fb]	δ_{tot} [%]
500	115	0.17493(2)	0.1629(2)	-6.9(1)
	150	0.071834(6)	0.06357(6)	-11.50(7)
	200	$0.49611(3) \times 10^{-3}$	$0.3329(2) \times 10^{-3}$	-32.90(4)
	115	0.17428(2)	0.1740(3)	-0.2(1)
600	150	0.10840(1)	0.1041(1)	-4.0(1)
	200	0.031802(3)	0.02935(2)	-7.71(7)
700	115	0.15868(3)	0.1632(3)	2.8(2)
	150	0.11665(2)	0.1155(2)	-1.0(1)
	200	0.058846(7)	0.05665(7)	-3.7(1)
800	115	0.14156(3)	0.1471(3)	3.9(2)
	150	0.11363(2)	0.1135(2)	-0.1(2)
	200	0.07246(1)	0.0705(1)	-2.7(1)
1000	115	0.11293(2)	0.1168(3)	3.4(3)
	150	0.09890(2)	0.0983(3)	-0.6(2)
	200	0.07790(1)	0.0753(2)	-3.3(2)
1500	115	0.07119(2)	0.0704(3)	-1.1(4)
	150	0.06684(2)	0.0634(2)	-5.1(3)
	200	0.06165(1)	0.0569(2)	-7.7(3)
2000	115	0.05021(1)	0.0473(2)	-5.8(4)
	150	0.04812(1)	0.0435(2)	-9.6(4)
	200	0.04630(1)	0.0408(2)	-11.9(4)

Dependence of the relative corrections on Higgs mass

Dependence of the relative corrections on collide energy

Results: compare with hep-ph/0309010

from hep-ph/0309010

\sqrt{s} (GeV)	$M_H (GeV)$	σ_{tree} (fb)	$\sigma_{\mathcal{O}(\alpha)}$ (fb)	$\delta_{\mathcal{O}(\alpha)}$ [%]
	115	0.17493(2)	0.1629(2)	-6.9(1)
		0.17491(2)	0.16282(2)	-6.91(1)
500	150	0.071834(6)	0.06357(6)	-11.50(7)
		0.071830(5)	0.063529(9)	-11.59(9)
	200	$0.49611(3) \cdot 10^{-3}$	$0.3329(2) \cdot 10^{-3}$	-32.90(4)
		$0.49606(4) \cdot 10^{-3}$	$0.332(3) \cdot 10^{-3}$	-33.0(6)
	115	0.14156(3)	0.1471(3)	+3.9(2)
		0.14155(1)	0.14705(2)	+3.89(1)
800	150	0.11363(2)	0.1135(2)	-0.1(2)
		0.11362(1)	0.11353(1)	-0.08(7)
	200	0.07246(1)	0.0705(1)	-2.7(1)
		0.072454(7)	0.07044(1)	-2.78(1)
	115	0.07119(2)	0.0704(3)	-1.1(4)
		0.07118(1)	0.07058(2)	-0.85(3)
1500	150	0.06684(2)	0.0634(2)	-5.1(3)
		0.06683(1)	0.06359(2)	-4.86(3)
	200	0.06165(1)	0.0569(2)	-7.7(3)
		0.061644(6)	0.05707(2)	-7.42(3)
	115	0.05021(1)	0.0473(2)	-5.8(4)
		0.05021(1)	0.04773(2)	-4.95(4)
2000	150	0.04812(1)	0.0435(2)	-9.6(4)
		0.048119(5)	0.04387(3)	-8.83(7)
	200	0.04630(1)	0.0408(2)	-11.9(4)
		0.046300(4)	0.04115(3)	-11.13(6)

EW corrections to $e^+e^- \rightarrow ZZH$ hep-ph/0604127

- Be useful to probe Higgs coupling to Z bosons
- Test the quadri-linear couplings (such as g_{HZZZ} $g_{H\gamma ZZ}$) which do not exist at tree-level in SM
- Could be potential backgrounds for new physics

Results to $e^+e^- \rightarrow ZZH$

Summary

- Higgs properties can be determined with high accuracy at the ILC
- Theoretical predictions of the cross sections for Higgs production at the ILC within per-cent accuracy are necessary
- We calculated the NLO EW corrections to the cross sections for $e^+e^- \rightarrow t\bar{t}h^0$, HHZ, ZZH
- The relative corrections are significant: from several % to a few 10% depending on collide energy, Higgs mass and other parameters

Thank you!