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Evolution of the LHT Idea

@ The “Little Higgs” question: Could the Higgs be a pseudo-
GSB of a global symmetry broken at a scale f ~ 1TeV?

Georgi, et. al. (1974)

@ Higgs mass unstable: With 1-loop corrections, m,=>f.
Solution: Collective Symmetry Breaking.

Arkani-Hamed, Cohen, Georgi (2002)

@ An economical implementation: The "Littlest Higgs” model.
a) EW sector embedded in an SU(5)/SO(5) nlsm.
b) Heavy vector quark, triplet scalar, and four GBS.

Arkani-Hamed, Cohen, Katz, Nelson (2002)

@ Little Hier. Problem: Violates EWPM without fine-tuning.
Solution: A Z, symmetry dubbed "T Parity” (LHs R Parity).

Cheng and Low (2004)
600GeV < f < 3TeV OK!

Hubisz, Meade, AN, and Perelstein (2005)



Why study the LHT?

@ Stabilizes the Higgs mass with perfurbative physics at
the TeV scale and radiative EWSB.

@ Satisfies EW constraints without fine-tuning.
@ Provides a WIMP dark matter candidate.

@ Predicts the pair production of new heavy particles and
a generic missing energy signal that could fake SUSY at
the LHC.
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A Non-Linear Sigma Model
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“Bosonic SUSY!”

@ At one-loop order, quadratic divergences in the Higgs
mass due to SM particles are cancelled by heavy
particles of the same spin-statistics running in the loop.

"Collective Symmetry Breaking”

@ AT two-loop order, the Higgs mass will receive quadratic

corrections, but no fine-tuning required if A~10TeV.
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Radiative EWSB

@ Implementing the collective symmetry breaking pattern in
the ftop sector introduces a T-even heavy Dirac fermion.
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@ Top sector gives leading contribution in the CW potential.

A2
M3

3)\2M2
D I
: |
mh 8 Og




Electroweak Constraints

Hewett, Petriello, Rizzo (2002)
Csaki, Hubisz, Kribs, Meade, Terning (2003)

@ Problems without T Parity

1) A small but non-vanishing < ¢ > due to hoh tadpole.

2) The tree-level exchange of
heavy gauge bosons.

@ T Parity saves the Littlest Higgs in the same way that
R Parity saves Supersymmetry.

1) Leading corrections to EWPM occur at one-loop order.

2) Heavy top contributions to the T parameter dominate EWP fits.



LHT Fit to EWPM

Hubisz, Meade, AN, and Perelstein (2005)
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A Heavy Higgs Region

Hubisz, Meade, AN, and Perelstein (2005)
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The LHT Fermion Content

SM T-even Fermions Composite T-odd Fermions

() (el
(%) L)Y,

ER, URy TR; YR, OR.CR 4SE, tit 00

For our purposes, assume a common mass ~kf.



Heavy Particle Spectrum

1
f T g
A
Wi~ @ f é ~ K f
\ 4
\ Bu~¢ f//5
Generic DM Coannihilator

(100GeV<M<500GeV) M>M






Relic Density

@ Pair annihilation: (ov) gives Q4. h% By is an s-annihilator!

@ Coannihilation: Solve two coupled Boltzmann equations.

By 6 6 q
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Pair-Annihilation

Hubisz and Meade (2004)
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Coannihilation
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@ Measuring the recoil energy of a nucleus due to an
elastic collision with a WIMP.

@ In the NRL, the cross-sections can be divided info
spin-independent and spin-dependent contributions.

@ The small couplings of By to partons result in DD
cross-sections significantly below current sensitivities.



Spin-Independent

SuperCDMS
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Spin-Dependent
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Gamma Ray B

Indirect Detection .=

@ Goal: Distinguish fluxes due to WIMP annihilation in the
galactic center from astrophysical backgrounds.

ov =
D ~ o J(6, 6, AQAQ

@ J contains the dependence on the halo dark matter
density squared.

@For AQ = 10""sr, typical of ACTs, estimates of J
near the galactic center range from 10°to10°



Monochromatic “Line” Flux

ACT sensitivity ® ~ (1 —5) x 10" ?cm ™ “sec™’



Fragmen’rahon Flux
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@ Dominant production process:
By + By - WTW— ZZ/WZ%QQ/Q%TF /7T — Yy

@ GLAST should see ~50 events above 2GeV.

@ But a soft, featureless spectrum makes this signal difficult
to distinguish from astrophysical backgrounds.



Visible Against GC Bkg

Hooper and Zaharijas (2006)
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Final State Radiation Flux
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@ Dominant production process: By + By — W W ™~

@ Flux reduced by a factor of & compared to fragmentation
photons.

@ Observation of the edge feature would strengthen the
case for WIMPs and provide a measurement of M.

Birkedal, Matchey, Perelstein, and Spray (2005)



Positron
Indirect Detection
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Conclusions
@ The “heavy photon” By in the Littlest Higgs with T Parity

provides a potential DM candidate.

@ BH can account for 100% of observed DM in both the pair
annihilation and coannihilation scenarios.

@ Current direct detection prospects are low, but
SuperCDMS would be sensitive to these cross-sections.

@ Indirect detection with the current ACT sensitivities
would require J 2 10° — 10°.

@ GLAST has the sensitivity to observe ~50 anomalous
gamma rays due to the fragmentation flux.
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Collective Symmetry Breaking

Idea from Arkani-Hamed, Cohen, Georgi (2001)
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The Top Sector

To the third-family quark doublet add a new Weyl fermion.

I Explicitly breaks
X = (ds, us, t) SU(G)!

Write down a Lagrangian that follows the collective
symmeitry breaking pattern.
i e AlfeijkexyXiijZkyug = )\fofc + h.c

1f !
Breaks SU(3), Breaks SU(3),

In the mass eigenbasis, we find the SM tfop Yukawa coupling
and a new “heavy top” T with an f-scale Dirac mass.




Top Sector Modification:

Lreven must follow the collective symmetry breaking pattern fo cancel,

Extend the two fermion doublets in this sector to SU(3) representations.

q1 0
Q= ( Uri ) B ( Ur2 ) where, under T Parity, S andleal O 8,
0 q2

Then the top sector Lagrangian supporting collective symmetry breaking is,

Lig= 2f>\1f€zgk€my[(Q1)¢ijzky—(QQEo)iijxiky}UR+>\2f(UL1UR1+UL2URQ)+h-C-

1 1
Breaks one T-even SU(3) Breaks other T-even SU(3)

In the mass eigenbasis, we find,
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T-odd Fermion Corrections

The leading contributions to four-fermion operators,
in the limit where Kk >> g, come from,
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Strongest constraint comes from eedd coefficient.
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Assuming a universal, flavor-diagonal Kk, the 12 T-odd
fermion doublets contribute,




Relic Abundance

2w o? M? 3
WTW= 1 T el |
gl ) = 3 ey (M = e e ( sl 4”“}) i

o2 M? /
i22) =il Oy (AM2 — m2)2 + m212 ( T Z“Z) Vol ~ os
a(t) = 4605129”/ (M7 M; s e Pl — )%/
il ﬁifg; (4Mgbh(1 +>”h18;hr2 24M4] W o
o(FF) = 16ma?Y 4N/ M?

9costOw (M2 + M2)2




Direct Detection: SI
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Direct Detection: SD
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ID: Line Flux
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ID: FSR Flux
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