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Why resummation?

* Fixed order perturbation theory
problematic for problems with widely
separated scales Q;>> Q..

e Large logarithms os" Log"(Q1/Qz2) and
OLs" Logzn(Q1/Q2). <« Sudakov logarithms

o Scale 1 coupling? as(Q1) or as(Q2)?

e Solution to both problems: integrate out
physics at Qi, solve RG, evolve to lower scale Qo.



Resummation for collider processes

* An old problem! In the past 20 year
resummations were performed for many
processes with scale hierarchies

e DIS for x—1, Drell-Yan and Higgs production for Q?/s
— 1, for Q1%/Q?% —0.

e ¢'e” event shapes, hadronic event shapes, ...

e LL for arbitray observables with MC.

e Will talk about a new method to perform
resummation of large perturbative log’s in
collider processes.

e Based on RG in Soft-Collinear Effective Theory



Soft-collinear effective theory

Bavuer, Pirjol, Stewart ‘00

p* ~pt < 2p-p

e Eff. theory to analyze processes
involving large momentum transfers
and small invariant masses

* Originally developed to analyze B-
meson decays to light hadrons

e Bomn, B—>Xulv, ..



* So far, we have analyzed only simplest

process, DIS for x—1 (as well as inclusive
B-decays)

o High precision: Next-to-next-to-next-to-leading
logarithmic accuracy (N3LL)

e Detailed comparison with standard approach

o Drell-Yan process and Higgs production for Q?%/s

— 1 underway. (See also Idilbi, J1 and Yuan, hep-ph/
0605068)

e Bauer and Schwartz: interesting proposal to
improve MCs with eff. theory

e Not yet implemented, tested only at LL accuracy.



Kinematics for DIS
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e Are interested in the limit x—1, more
precisely Q° > Q*(1 —z) > Adep
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Factorization for DIS as x—1

Sterman ‘8
s Ldz 1 -2 T (T
FQ (vaQ) :H(Q27ﬂ) QZ/x ?J(QZ - nu);¢q (;mu)

hard  x et & PDF
Q2 >>  Q%(1-x) > A’

e Rederivation in SCET had troubled history

e (Claims of nonfactorization, different form of
factorization, non-perturbative factorization...

* hep-ph/0607228 resolves these differences.

* Proper identification of PDF as x—1 crucial.

e Resummation by solving RG equations for three
parts.



Traditional method: moment space

Sterman ‘87, Catani and Trentadue ‘89
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* Convolution in momentum space —
product in moment space

e x—1 corresponds to N—co. Perturbation
theory contains os" Log™(V) and as" Log?®(N)

e Split:
CN(Q27 :uf) — gO(Qza :uf) CXPp [GN(sz ,Uf)}



Resummation in moment space

CN(Q27 :uf) — gO(Qza :uf) eXPp [GN(Q27 :uf)]

N1 -1 ~ Landau pole
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Cusp anomalous dim. Anom. dim. of 22

e Ag Bqdetermined by matching to fixed

Order I'esult, NNNLL: Moch, Vermaseren, Vogt ‘05



Mellin Inversion
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e Can only be done numerically

e Problem with Fortran PDF’s.



Resummation in momentum space

e Match QCD onto Soft-Collinear Effective
theory.

e Use RG evolution to resum logarithms.
% ;
match — run —
H (pn) < Ur(pns pi)




First matching step

e Match QCD current onto E urrent

(v ) (z) — (EWe) (z_) 7 (W) &ne) ()

proton let

 Wilson coefficient Cy and anomalous
dimension yv from on-shell matching

 on-shell FF is known to 2 loops (—Cy),
divergencies to 3 loops (—Yv)

e Match OCD current onto EFT current
_ ' :
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Running to intermediate scale:

Solution to the RG:
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Jet-function

J(p?) = “Tmi [ d®e=P7 (0| T [WF(0)€40(0) EnaW (2)]0] [0)

T

e Propagator in light-cone gauge.

e Have evaluated J(p?) to 2 loops.
TB, M.Neubert, hep-ph/0603140
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RG evolution of the jet-function

dJ(p?, p)
dln u

2
p
— — [2FCUSp(OzS) In F + Q’YJ(OAS)] J(p27 :LL)

4 J(pl27 :u) - J(p27 :U“)
— 2P0usp(058) / dpl2 2 72
0 p= =P

J(p?, 1) = exp [ =4S (i, pr) + 207 (i, 1)

- e~ VEN 1 p2 N
<o) Ty 5 (1)

24 d
n="2 f 2 Fausplrs ()]
Ho H

= 2ar (i, 1),

* Associated jet-functionjis Laplace
transform of J(p?14).



* Plug RG solutions into tactorization
theorem, assume dq(X,L1f) ~ (1-x)b(HD)
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e Resummed result obtained after plugging in
fixed order results for coetficient Cy, jet-function
and anom. dimensions.



Difference to traditional approach

e Simple analytic result in momentum space

* No Landau pole ambiguities. No coupling
below scales pj, piand

* Freedom to choose scales py, pi and py

e Obtain fixed order for ps=pi=Hr Trivial matching
to fixed order result for generic x.

* Set appropriate scales after integrating

* Avoids large spurious power corrections
discussed by Catani et al. hep-ph /9604351

e Estimate uncertainties with scale variation



Result for Fons(x)/gp(x)

Q =30GeV, ur=>5GeV, o(z,ur) ~ (

Ui
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o Default scales: un?=0? and u?=07?(1-x)

e Bands obtained by varying these scales a factor of two up
and down.

e Matching scales are fixed 1n traditional approach.
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* LO (=NLL), NLO, NNLO

e Dashed: fixed order. Solid: resummed.

* Large K-factors.



Comparison with fixed order, low u
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» LO (=NLL), NLO, NNLO

e Dashed: fixed order. Solid: resummed.

e Fixed order with u=urfairly close to resummed result!
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Comparison with moment space result

My < 1GeV

e Dashed: Mellin inverted moment space results. Solid:
momentum space results.

e Only small numerical differences (different scale
choice, 1/N corrections in moment space).

» Faster convergence of momentum space results.



Moments Cn=F2 N/

* Q=30GeV, un=Q, ui*= Q¥N, ur= 5 GeV.

e Solid: EFT, default scale. Dashed: Moch,

Vermaseren, Vogt, hep-ph/0506288.
e Note: NNLO indistinguishable.




Connection with standard approach

e Can compare EFT expression for
moments with standard results. The
two agree provided that

2 ~
(1+ 5974 Byla) =27 (a) + 9 j(0.n)

’ G
(12v_§3 ‘|‘> Fczllsp(()4.9)7 V — d/dlnuZ

e fulfilled with two-result from explicit
calculation of J(p?).



e Traditionally, resummation for hard processes is
performed in moment space.

e Landau poles (in Sudakov exponent and Mellin inversion)

* Mellin inversion only numerically

Solving RG equations in SCET, we have obtained
resummed expressions directly in momentum
space.

* C(lear scale separation. No Landau pole ambiguities.

* Analytic expressions for resummed rates.

e Simple connection with fixed order expressions.
Same technology should be applicable to many
other processes.

* Threshold resummation for DY and Higgs production
under way.



