

- Particle Flow for the ILC
- (Jet) Energy Resolution Goal
- / PFA Confusion Contribution
  - Detector Optimization with PFAs
  - Future Developments

Stephen Magill
Argonne National Laboratory

# e<sup>+</sup>e<sup>-</sup> -> ttbar -> 6 jets @500 GeV CM



### Precision Physics at the ILC

- e+e-: clean but sometimes complex events
- often statistics limited
- final states with heavy bosons W, Z, H
- can't ignore hadronic decay modes (80% BR)
   -> multi-jet events
- in general no kinematic fits



### W, Z separation

- Want  $m_z m_w = 3\sigma$ 
  - -> jet energy resolution of 30%/√ E
- Better resolution is worth almost a factor 2 of luminosity – or running cost

Dijet masses in WW and ZZ events







Dilution factor vs cut: integrated luminosity equivalent

### The Particle Flow Approach

PFA Goal: 1 to 1 correspondence between measured detector objects and particle 4-vectors -> best jet (parton) reconstruction (energy and momentum of parton)

- -> combines tracking and 3-D imaging calorimetry:
- good tracking for charged particles (~60% of jet E)
  - ->  $\sigma_{\rm p}$  (tracking) <<<  $\sigma_{\rm E}$  for photons or hadrons in CAL
- good EM Calorimetry for photon measurement (~25% of jet E)
  - $\rightarrow \sigma_F$  for photons  $< \sigma_F$  for neutral hadrons
  - -> dense absorber for optimal longitudinal separation of photon/hadron showers
- good separation of neutral and charged showers in E/HCAL
  - -> CAL objects == particles
  - -> 1 particle: 1 object -> small CAL cells
- adequate E resolution for neutrals in HCAL (~10% of jet E)
  - ->  $\sigma_{\rm E}$  < minimum mass difference, e.g.  $M_{\rm Z}$   $M_{\rm W}$
  - -> still largest contribution to jet E resolution



# Dijet event in CDF Detector

ppbar -> qqbar -> hadrons + photons -> large calorimeter cells traditional jet measurement

One jet in Z -> qqbar event in a LC Detector



Z -> qqbar -> hadrons + photons = small 3D cal cells
PFA jet measurement

# Occupancy Event Display



# Jet E Resolution - Particle Flow Approach

- Jet energy resolution  $\sigma^2(\mathsf{E}_{\mathsf{jet}}) = \sigma^2(\mathsf{ch.}) + \sigma^2(\gamma) + \sigma^2(\mathsf{h}^0) + \sigma^2(\mathsf{conf.})$
- Excellent tracker:
  σ²(ch.) << σ²(γ) + σ²(h⁰) + σ²(conf.)</p>
- Perfect PFA : σ²(conf.) = 0
- $\sigma^{2}(E_{jet}) = A_{\gamma}^{2}E_{\gamma} + A_{h}^{2}E_{h0} = W_{\gamma}A_{\gamma}^{2}E_{jet} + W_{h0}A_{h}^{2}E_{jet}$  $\sigma(E_{\gamma,h})/E_{\gamma,h} = A_{\gamma,h}/\sqrt{E_{\gamma,h}}$





Typically  $w_{\gamma} = 25\%$ ;  $w_{h0} = 13\%$ 

$$A_{\gamma} = 11\%$$
;  $A_{h0} = 34\%$   
=>  $\sigma(E_{jet})/E_{jet} = 12\%/\sqrt{E_{jet}}$ 

$$A_{\gamma} = 11\% ; A_{h0} = 50\%$$
  
=>  $\sigma(E_{jet})/E_{jet} = 17\%/\sqrt{E_{jet}}$ 



#### Jet E Resolution - Confusion Term

Example PFA Construction – mips, photons, charged hadrons, neutral hadrons

| The Halley               | mips                        | photons              | Ch. hadrons                   | Neu. hadrons            |
|--------------------------|-----------------------------|----------------------|-------------------------------|-------------------------|
| mips  So Assothure Plane | $\sigma_{mip}$              | $\sigma_{mip\gamma}$ | $\sigma_{mipch}$              | $\sigma_{mipnh}$        |
| photons                  | $\sigma_{\gamma 	ext{mip}}$ | $\sigma_{\gamma}$    | $\sigma_{\gamma \mathrm{ch}}$ | $\sigma_{\gamma  m nh}$ |
| Ch. hadrons              | $\sigma_{chmip}$            | $\sigma_{ch\gamma}$  | $\sigma_{ch}$                 | $\sigma_{chnh}$         |
| Neu. hadrons             | $\sigma_{nhmip}$            | $\sigma_{nh\gamma}$  | $\sigma_{nhch}$               | $\sigma_{nh}$           |

- -> Replace mips, charged hadron showers with tracks
- -> mip  $\gamma$ , neutral hadron confusion small

So, 
$$\sigma_E^2 = \sigma_\gamma^2 + \sigma_{nh}^2 + \sigma_{conf}^2$$
  
where  $\sigma_{conf}^2 = \sigma_{chnh}^2 + \sigma_{\gamma ch}^2 + \sigma_{\gamma nh}^2$  (6 terms)

### PFAs and Detector Design

PFA key to success -> complete separation of charged and neutral hadron showers

- -> hadron showers NOT well described analytically, fluctuations dominate # of hits, distribution (shape)
- -> average approach -> E resolutions dominated by fluctuations
- -> shower reconstruction algorithms -> sensitive to fluctuations on a shower-by-shower basis
  - -> PFA approach for better E resolution

Calorimeter designed for optimal 3-D hadron shower reconstruction:

- -> granularity << shower transverse size
- -> segmentation << shower longitudinal size
- -> dependence on inner R, B-fjeld, etc.

using PFA approach to test variations

#### PFA + Full Simulations -> ILC detector design

- unique approach to calorimeter design
- needs good simulation of the entire ILC detector
- requires flexible simulation package -> fast variation of parameters
- huge reliance on correct! simulation of hadron showers
  - -> importance of timely test beam results!

# Approaches to PFA Development \*

#### Calorimeter Cluster-based Algorithms

-> start with calorimeter cell clustering ~ particle showers Cluster ID by Neural Net

Many variables used to determine particle origin of cluster including tracking input

#### Weighted Calorimeter Clusters

Density or energy weights used to link calorimeter cells Tracks matched to clusters - use track p

#### Sub-cluster ID

Separately cluster EM, mip, and hadronic parts of a particle shower

"perfect" compensation?

#### Track Extrapolation/Shower Association Algorithms

-> start with tracks (60% of jet energy from charged particles Mip stubs, track extrapolation with E loss Calorimeter cell or cluster association to extrapolated track

with various algorithms

Leftover cells (clusters) are photons (ECAL), neutral hadrons

\* Don't miss Cal/Sim session Friday before lunch!

### Particle-Flow Algorithm Approaches

#### Calorimeter Cluster-based Algorithms

-> start with calorimeter cell clustering ~ particle showers Cluster ID by Neural Net

Many variables used to determine particle origin of cluster including tracking input

#### Weighted Calorimeter Clusters

Density or energy weights used to link calorimeter cells Tracks matched to clusters - use track p

#### Sub-cluster ID

Separately cluster EM, mip, and hadronic parts of a particle shower

"perfect" compensation

"pixel" calorimeter

No tracking needed?!

#### Track Extrapolation/Shower Association Algorithms

Mip stubs, track extrapolation with E loss
No calorimeter clustering needed - cell-by-cell association to
extrapolated track with various algorithms
Leftover cells are photons (ECAL), neutral hadrons

# Why Z Pole Analysis?

- Generate Z→ qq events at 91GeV.
- Simple events, easy to analyze.
- Can compare analysis results with SLC/LEP.
- Can easily sum up event energy in ZPole events.
  - Width of resulting distribution is direct measure of resolution, since events generated at 91GeV.
- Without uncertainty of jet algorithm effects, can test PFA performance
- Run jet-finder on Reconstructed Particle four vectors, calculate dijet invariant mass.

We are basically here, we are just beginning to understand some very basic performance characteristics of Particle Flow

-> we are ready to tackle the multi-jet events and higher energy jets at 500 GeV

### PandoraPFA : brief overview

- ★ ECAL/HCAL reconstruction and PFA performed in a single algorithm
- ★ Keep things fairly generic algorithm
  - \* applicable to multiple detector concepts
- ★ Use tracking information to help ECAL/HCAL clustering

#### Five Main Stages:

- i. Loose clustering in ECAL and HCAL
- ii. Topological linking of clearly associated clusters
- iii. Courser grouping of clusters
- iv. Statistical reclustering
- v. Formation of final Particle Flow Objects (reconstructed particles)

#### Mark Thomson, Univ of Cambridge

- -> Marlin Reconstruction package (C++ based)
- -> primarily LDC + variants

### Current Performance (as of 15/6/06)







**★Find smallest region containing** 90 % of events

**★**Determine rms in this region

# PFA Results (Z →uds)



#### ILC GOAL OF 30 % ACHIEVED!

- ★ BUT only for Z at 91.2 GeV
- ★ In barrel essentially "perfect"
- **★ Endcap issues**

#### LDC00

| cosθ | $\sigma_{\rm E}/{\rm E} = \alpha \sqrt{({\rm E}/{\rm GeV})}$ |
|------|--------------------------------------------------------------|
| all  | 33.4±0.3%                                                    |
| <0.9 | 30.5±0.3 %                                                   |
| <0.7 | 29.2±0.4 %                                                   |



### Track-first Extrapolation PFA

1st step – Track-linked mip segments (ANL)

-> find mip hits on extrapolated tracks, determine layer of first interaction based solely on cell hit density (no clustering of hits, no energy measurement)

#### 2<sup>nd</sup> step - Photon Finder (SLAC, Kansas)

-> use analytic longitudinal H-matrix fit to layer E profile with ECAL clusters as input (any cluster algorithm)

#### 3rd step - Track-linked EM and HAD clusters (ANL, SLAC)

- -> substitute for Cal objects (mips + ECAL shower clusters + HCAL shower clusters), reconstruct linked mip segments + clusters loose NN clusterer) iterated in E/p
- -> Analog or digital techniques in HCAL

#### 4th step – Neutral Finder algorithm (SLAC, ANL)

-> cluster (tighter NN clusterer) remaining CAL cells, merge, cut fragments

#### ANL, SLAC, Kansas

- -> org.lcsim reconstruction, JAS3 analysis (Java)
- -> primarily SiD and variants

### PFA Module Comparisons









#### PFA Results





SiD Detector Model
Si Strip Tracker
W/Si ECAL, IR = 125 cm
4mm X 4mm cells
SS/RPC Digital HCAL
1cm X 1cm cells
5 T B field (CAL inside)

Average confusion contribution = 1.9 GeV < neutral hadron resolution contribution of 2.2 GeV

-> PFA goal!\*

# e.g. B-Field

LDC00 Detector (≈ TESLA TDR) - same event different B



| B-Field | $\sigma_{E}/E = \alpha \sqrt{(E/GeV)}$ |            |  |
|---------|----------------------------------------|------------|--|
| B-Fleiu | All angles                             | cosθ <0.7  |  |
| 2 Tesla | 34.1±0.3%                              | 30.8±0.4 % |  |
| 4 Tesla | 33.4±0.3 %                             | 29.2±0.4 % |  |
| 6 Tesla | 34.4±0.3 %                             | 29.7±0.4 % |  |

Only weak B-field dependence

★ BUT still Z at 91.2 GeV

#### Detector Comparisons with PFAs Vary B-field





SiD SS/RPC - 5 T field Perfect PFA  $\sigma$  = 2.6 GeV PFA  $\sigma$  = 3.2 GeV Average confusion = 1.9 GeV SiD SS/RPC - 4 T field Perfect PFA  $\sigma$  = 2.3 GeV PFA  $\sigma$  = 3.3 GeV Average confusion = 2.4 GeV

-> Better performance in larger B-field

### Detector Optimized for PFA?





SiD -> CDC 150

ECAL IR increased from 125 cm to 150 cm
6 layers of Si Strip tracking
HCAL reduced by 22 cm (SS/RPC -> W/Scintillator)
Magnet IR only 1 inch bigger!
Improved PFA performance w/o increasing magnet bore

# Jet Energy Dependence

- ★ Look at Z→uds at √s > 91.2 GeV
- ★ LDC00 detector model

| Е                | σ <sub>E</sub> /E = <mark>α√(E/GeV)</mark> |            |  |
|------------------|--------------------------------------------|------------|--|
| E <sub>JET</sub> | All angles                                 | cosθ <0.7  |  |
| 45 GeV           | 33.4±0.3%                                  | 29.2±0.4 % |  |
| 100 GeV          | 42.0±0.3 %                                 | 38.4±0.5 % |  |
| 180 GeV          | 71.7±0.3 %                                 | 63.8±0.4 % |  |
| 250 GeV          | 90.7±2.0 %                                 | 87.2±2.5 % |  |



- \* Rapid degradation of performance with increasing jet energy
- ★ However, for 100 GeV jets not bad
- ★ At ILC typically interested in 6 fermion final states
- ★ Current performance probably OK for physics studies at √s =500 GeV
- ★ Probably not yet good enough for √s = 1 TeV

# e<sup>+</sup>e<sup>-</sup> → tt → 6 jets at √s=500 GeV



★compare raw resolutions; <u>+ add in v</u>; + add energy lost in forward region

| Detector Model                    | $\sigma_E/E = α\sqrt{(E/GeV)}$ |                  |                   |
|-----------------------------------|--------------------------------|------------------|-------------------|
| Detector Model                    | E <sub>RECO</sub>              | + E <sub>v</sub> | +E <sub>FWD</sub> |
| LDC01Sc r <sub>tpc</sub> = 1380mm | 89 ± 2 %                       | 61 ± 1 %         | 56 ± 1 %          |
| LDC01Sc r <sub>toc</sub> = 1580mm | 83 ± 2 %                       | 56 ± 1 %         | 52 ± 1 %          |
| LDC00Sc r <sub>tpc</sub> = 1690mm | 76 ± 2 %                       | 48 ± 1 %         | 45 ± 1 %          |
| LDC00Sc r <sub>tpc</sub> = 1890mm | 75 ± 2 %                       | 46 ± 1 %         | 42 ± 1 %          |

- \* Fairly strong dependence of performance on Radius
- **★** Discontinuity in going from LDC00 → LDC01 (alg. tuned on LDC00)
- ★ "+E<sub>FWD</sub>": imperfect accounting of lost energy in FWD region

# **HCAL Granularity**



| Detector Model      | $\sigma_{Evis}/E = \alpha \sqrt{(E/GeV)}$ |            |           |
|---------------------|-------------------------------------------|------------|-----------|
| Detector Model      | Z @91 GeV                                 | tt@500 GeV | Z@500GeV  |
| LDC00Sc 1cm x 1cm   | 31.4 ± 0.3 %                              | 42 ± 1 %   | 81 ± 2 %  |
| LDC00Sc 3cm x 3cm   | 30.6 ± 0.3 %                              | 45 ± 1 %   | 88 ± 2 %  |
| LDC00Sc 5cm x 5cm   | 31.3 ± 0.3 %                              | 48 ± 1 %   | 94 ± 2 %  |
| LDC00Sc 10cm x 10cm | 33.7 ± 0.3 %                              | 56 ± 1 %   | 114 ± 2 % |

- \* 10x10 too coarse (can be seen clearly from display)
- ★ Finer granularity helps somewhat at higher energies why?

# Summary – where we go from here

#### At ZPole:

- •Have achieved desired jet energy resolution of 30%/√E
- Have achieved  $\sigma_{\rm confusion} < \sigma_{\rm neutral\ hadron}$  in PFA energy sum stackable and the stackab

Have developed huge collection of tools necessary for both PFA development and detector optimization:

- Flexible, fast full simulation packages
- Full reconstruction capabilities
- Calorimeter calibration procedures
- Standardized algorithm comparison tools
- Modular, standardized PFA Template

#### Next Steps:

- Move from energy sums to dijet mass PFA jet reconstruction
- Move to physics events at 500 GeV CM
- •Use PFAs for detector optimization at 500 GeV

