LHC and ILC Measurements of Strong Electroweak Symmetry Breaking

Tim Barklow SLAC July 21, 2006

Outline

- Anomalous quartic couplings
- WW→tt
- Resonances
- Example of LHC/ILC Interplay

The bosonic part of the lowest-order chiral Lagrangian reads

$$\mathcal{L}_0 = -\frac{1}{2}\operatorname{tr}\left\{\mathbf{W}_{\mu\nu}\mathbf{W}^{\mu\nu}\right\} - \frac{1}{2}\operatorname{tr}\left\{\mathbf{B}_{\mu\nu}\mathbf{B}^{\mu\nu}\right\} - \frac{v^2}{4}\operatorname{tr}\left\{\mathbf{V}_{\mu}\mathbf{V}^{\mu}\right\} + \beta_1\mathcal{L}_0' + \sum_i \alpha_i\mathcal{L}_i$$

 $\mathcal{L}'_0 = \frac{v^2}{4} \operatorname{tr} \{ \mathbf{T} \mathbf{V}_{\mu} \} \operatorname{tr} \{ \mathbf{T} \mathbf{V}^{\mu} \}$

$$\mathcal{L}_{1} = gg'\operatorname{tr}\left\{B_{\mu\nu}W^{\mu\nu}\right\}$$

$$\mathcal{L}_{2} = ig'\operatorname{tr}\left\{B_{\mu\nu}[V^{\mu}, V^{\nu}]\right\}$$

$$\mathcal{L}_{3} = ig\operatorname{tr}\left\{W_{\mu\nu}[V^{\mu}, V^{\nu}]\right\}$$

$$\mathcal{L}_{4} = \left(\operatorname{tr}\left\{V_{\mu}V_{\nu}\right\}\right)^{2}$$

$$\mathcal{L}_{5} = \left(\operatorname{tr}\left\{V_{\mu}V^{\mu}\right\}\right)^{2}$$

$$\mathcal{L}_{6} = \operatorname{tr}\left\{V_{\mu}V^{\mu}\right\}\operatorname{tr}\left\{\operatorname{T}V^{\mu}\right\}\operatorname{tr}\left\{\operatorname{T}V^{\nu}\right\}$$

$$\mathcal{L}_{7} = \operatorname{tr}\left\{V_{\mu}V^{\mu}\right\}\left(\operatorname{tr}\left\{\operatorname{T}V_{\nu}\right\}\right)^{2}$$

$$\mathcal{L}_{8} = \frac{1}{4}g^{2}\left(\operatorname{tr}\left\{\operatorname{T}W_{\mu\nu}\right\}\right)^{2}$$

$$\mathcal{L}_{9} = \frac{1}{2}ig\operatorname{tr}\left\{\operatorname{T}W_{\mu\nu}\right\}\operatorname{tr}\left\{\operatorname{T}V^{\mu}, V^{\nu}\right]\right\}$$

$$\mathcal{L}_{10} = \frac{1}{2}\left(\operatorname{tr}\left\{\operatorname{T}V_{\mu}\right\}\right)^{2}\left(\operatorname{tr}\left\{\operatorname{T}V_{\nu}\right\}\right)^{2}$$

Quartic Couplings at LHC

$$L = 100 \, fb^{-1}$$

Older analysis (1998) using equivalence theorem and/or equivalent W approximation

A.S. Belyaev et al. hep-ph/9805229

Quartic Couplings at LHC

$$L = 100 \, fb^{-1}$$

New analysis with full matrix element calculation for all 6-fermion final states at $O(\alpha_{em}^6)$ and $O(\alpha_{em}^4 \alpha_s^2)$

O.J.P. Eboli et al. hep-ph/0606118

Quartic Couplings

at ILC

$$e^+e^- \rightarrow WWZ$$

case A:
$$e_{pol}^{-} = 0\%$$

 $e_{pol}^{+} = 0\%$

case B:
$$e_{pol}^{-} = 80\% \text{ R}$$

$$e_{pol}^+ = 0\% L$$

case C:
$$e_{pol}^- = 80\% \text{ R}$$

$$e_{pol}^{+} = 60\% \, \mathrm{L}$$

$$\sqrt{s} = 1000 \, GeV$$

$$L = 1000 \, fb^{-1}$$

M. Beyer et al. hep-ph/0604048

Quartic Couplings

at ILC

$$e^+e^- \rightarrow WWZ$$

$$e^+e^- \rightarrow ZZZ$$

$$e_{pol}^- = 80\% \text{ R}$$

$$e_{pol}^{+} = 60\% \text{ L}$$

$$\sqrt{s} = 1000 \, GeV$$

$$L = 1000 \ fb^{-1}$$

M. Beyer et al. hep-ph/0604048

Quartic couplings at ILC

$$e^+e^- \rightarrow \nu_e \nu_e WW$$

$$e^+e^- \rightarrow \nu_e \nu_e ZZ$$

$$e^+e^- \rightarrow eeWW$$

$$e^+e^- \rightarrow eeZZ$$

$$e^+e^- \rightarrow e\nu_e WZ$$

$$e_{pol}^{-} = 80\% \text{ L}$$

$$e_{pol}^{+} = 40\% \text{ R}$$

$$\sqrt{s} = 1000 \, GeV$$
$$L = 1000 \, fb^{-1}$$

$e^+e^- \rightarrow \nu\nu t \bar{t}$, ..., Before Cuts

 $WW \rightarrow t\overline{t}$ is sensitive to strong symmetry breaking in the fermion sector.

$$\sqrt{s} = 2000 \, GeV$$
:

$e^+e^- \to \nu\nu t\bar{t}$ After Cuts

 12σ ($28\sigma)$ LET signal at $\sqrt{s}=1000$ GeV (1500 GeV) LC with $\mathcal{L}=1000~{\rm fb^{-1}}$

Direct Resonance Detection at LHC

$$L = 100 \, fb^{-1}$$

Cross section after cuts:

1 TeV Scalar1.4 TeV Vector

non resonant

Direct Resonance

Detection at LHC

$$L = 100 \, fb^{-1}$$

Cross section after cuts:

1.9 TeV Vector non resonant

Indirect Detection of Heavy ρ -like Vector Resonances at ILC in $e^+e^- \rightarrow W^+W^-$

$$\sqrt{s} = 500 \, GeV$$

$$L = 500 \, fb^{-1}$$

 F_T is the form factor for the amplitude $e^+e^- \rightarrow W_L^+W_L^-$

$$F_T = 1 + s \sum_{k} \frac{a_k}{M_k^2}$$

Take example of direct detection of 1.9 TeV resonance at LHC.

Fit LHC mass distribution to Gaussian using resonance mass, width and strength a_1^2 as fit parameters. Project 3-d error ellipse onto Mass - a_1 plane (green):

Measure form factor F_T at the ILC

at $\sqrt{s} = 500$ and 1000 GeV and fit for resonance mass, width and a_1 .

If the resonance is a vector you get the narrow black ellipse. If a scalar you get $a_1 = 0$.

$$F_T = 1 + s \sum_{k} \frac{a_k}{M_k^2}$$

Summary

- Both LHC and the ILC at E_{cm} =1000 GeV measure anomalous quartic couplings α_4 , α_5 at the few percent level; systematics of LHC/ILC quite different; ILC quartic coupling reach is now well documented.
- ILC can uniquely measure WW > tt and thereby probe strong symmetry breaking in the fermion sector.
- Only LHC can directly detect strong resonances, although ILC can be indirectly sensitive to vector resonances beyond the reach of LHC.
- An example was given where the ILC helped pin down the spin, coupling strength, and mass of a 1.9 TeV resonance detected in WW scattering at the LHC.