
org.lcsim
Reconstruction and Analysis
framework for ILC Detectors

Tony Johnson
SLAC
July 2006

org.lcsim: Contents

Overview/Goals
Geometry/Conditions/Detector system
Reconstruction overview/status
Using org.lcsim with JAS3
Using org.lcsim with WIRED4
Becoming an org.lcsim Developer
Where next?

org.lcsim Goals
“Second generation” ILC reconstruction/analysis framework

Builds on hep.lcd framework used since 1999
Full suite of reconstruction and analysis tools

Uses LCIO for IO and as basis for simulation, raw data and
reconstruction event formats

Isolate users from raw LCIO structures
Maintain full interoperability with other LCIO based packages

Detector Independence
Make package independent of detector, geometry assumptions so can
work with any detector
Read properties of detectors at runtime

Written using Java (1.5)
High-performance but simple, easy to learn, OO language
Enables us last 10 years of software developments in the “real world”

Ability to run standalone (command line or batch) or in JAS3 or IDE
such as Netbeans, Eclipse

org.lcsim: Compact Geometry Description
org.lcsim uses “Comact Geometry Description” to
define detector

Simple XML format for describing ILC detectors
Handles typical ILC detector geometries

Range of detectors handled is extensible (by writing Java
modules)

Allows rapid prototyping of new detector geometries
Does not require network access or installation of
database software to run
Automatic generation of full Geant4 LCDD geometry for
full compatibility with SLIC

org.lcsim: Geometry Converter

Compact
Description

LCDD
(SLIC)

HepRep
(Wired)

org.lcsim
Analysis &

Reconstruction

GODL
(Lelaps)

Small Java program for converting
from compact description to a
variety of other formats

org.lcsim Conditions Data
Provide access to a extensible set of conditions for each detector
including:

Detector Geometry
Algorithm Specific Constants

E.g. FastMC smearing parameters
Doesn’t make assumptions about format of data
Doesn’t rely on internet access, or local database installation
Detector Constants stored in .zip file

Typically contains:
Compact geometry file
Set of (ascii) constants for standard algorithms

Can additionally contain:
Arbitrary files (xml, ascii, binary) needed by other algorithms
Other geometry formats (HepRep, LCDD)
Full fieldmap

To define a new detector just create a new .zip file.

Available Detector Descriptions
Although detector descriptions can live anywhere we
maintain a CVS repository of detector descriptions

Exported to org.lcsim web site for automatic download
40 detector variants as of July 2006
Many SiD variants, but also some gld, ldc

You are welcome to contribute more

Org.lcsim Reconstruction
Reconstruction package includes:

Physics utilities:
Jet finders, event shape routines
Diagnostic event generator, stdhep reader/translator
Histogramming/Fitting/Plotting (AIDA based)
Event Display
Processor/Driver infrastructure

Fast MC
Track/Cluster smearing

Reconstruction
Cheaters (perfect reconstruction)
Detector Response

CCDSim, Digisim
Clustering Algorithms

Cheater, DirectedTree, NearestNeighbour, Cone
Tracking Finding/Fitting Algorithms

TRF,
Muon Finding, Swiming
Vertex Finding (ZvTop)

org.lcsim: Contrib Area

Goal of org.lcsim is not to provide “A single reconstruction package” but
rather a framework into which reconstruction algorithms can be
plugged.
We encourage users to contribute code to the “contrib” area as soon as
possible.

Important to encourage collaboration, reuse, and as learning tool.
Many contributions added in last year:

HMatrix cluster analysis
VertexFitter
PFA algorithms/template
SODTracker
Garfield Tracker
Calorimeter Cell Ganging
FastMC improvements
Tracking finding/fitting
MIP Finder
Minimum Spanning Tree Clustering

org.lcsim results (See many other talks at this workshop)

Using org.lcsim with JAS3

The org.lcsim can be used standalone, withan IDE,
or inside JAS3. Same code can be used in all
modes, so easy to move back and forth

E.g. develop in IDE and run in JAS3
E.g. develop in JAS3 and run in batch

JAS3 org.lcsim plugin adds:
Example Analysis Code
org.lcim Event browser
Easy viewing of analysis plots
WIRED event display integration

org.lcsim: Examples

org.lcsim: Examples

org.lcsim: Plot Viewing

Using org.lcsim with WIRED4

Using org.lcsim with WIRED4

Using org.lcsim with WIRED4

Using org.lcsim with WIRED4

Using org.lcsim with WIRED4

Interoperability

SiD

GLD

LDC

How hard is it to get started with
org.lcsim?

Works on Linux, MacOSX, Windows
Should take about 15 minutes to install JAS3 and
org.lcsim plugin.

Case Study: SLAC Summer student
2 semesters of Java experience

(no C++, Fortran etc)
Using tutorial on lcsim.org Wiki; installed software,
downloaded data, and got useful results in one day
(and fixed a few errors in the documentation along
the way).
Regular analysis updates have been appearing on
her blog ever since!

Even if you don’t have Java experience you can
get started almost as fast

(the only thing you will miss is the core dumps)
Start here:

https://confluence.slac.stanford.edu/display/ilc/lcsi
m+Getting+Started
Problems? Attend Tuesday afternoon “Simulation”
phone meeting or use discussion forum at
http://forum.linearcollider.org/

Becoming an org.lcsim developer

To get started you just need “Java”, “cvs”, “maven”
Maven is a Java based project management tool
Single command “maven”

downloads dependencies, compiles code, runs tests, deploys code
All code in CVS
To check-out and build all code:

set CVSROOT=“pserver:anonymous@cvs.freehep.org:/cvs/lcsim”
cvs co GeomConverter
cd GeomConverter
maven
cd ..
cvs co lcsim
cd lcsim
maven

Find more documentation at:
http://lcsim.org/
Read/Contribute to the Wiki at: https://confluence.slac.stanford.edu/display/ilc/Home
Discuss at: http://forum.linearcollider.org/

We strongly encourage developers to use IDE
Netbeans, Eclipse both free, easy to learn, very powerful
Use mevenide to teach IDEs about maven systen

Using org.lcsim with Netbeans

Where Next?
Some clean-up of “Track/Track Parameters” and “Geometry”
interface

Form org.lcsim clean-up “Task Force”
Jeremy and Jan Strube are seconded
Other volunteers welcome

Complete Tracking/Vertexing packages
Migrate some contrib code to main code base
We are close to complete tracking/PFA/vertexing/flavor tagging
chain.

Should create fully simulated/reconstructed data to complement
Fast MC studies

Interoperability
LCIO works nicely
Geometry interoperability remains elusive but highly desirable
Ability to call C++ (MarlinReco) modules from org.lcsim

Perhaps more possible with new version of SWIG

Conclusion

org.lcsim Framework is mostly complete
If there are limitations which are impeding your
work, let us know!

User contributed reconstruction software
growing rapidly

Several more contributions promised soon

