org.lcsim Reconstruction and Analysis framework for ILC Detectors

Tony Johnson SLAC July 2006

org.lcsim: Contents

- Overview/Goals
- Geometry/Conditions/Detector system
- Reconstruction overview/status
- Using org.lcsim with JAS3
- Using org.lcsim with WIRED4
- Becoming an org.lcsim Developer
- Where next?

org.lcsim Goals

- "Second generation" ILC reconstruction/analysis framework
 - Builds on hep.lcd framework used since 1999
 - Full suite of reconstruction and analysis tools
- Uses LCIO for IO and as basis for simulation, raw data and reconstruction event formats
 - Isolate users from raw LCIO structures
 - Maintain full interoperability with other LCIO based packages
- Detector Independence
 - Make package independent of detector, geometry assumptions so can work with any detector
 - Read properties of detectors at runtime
- Written using Java (1.5)
 - High-performance but simple, easy to learn, OO language
 - Enables us last 10 years of software developments in the "real world"
- Ability to run standalone (command line or batch) or in JAS3 or IDE such as Netbeans, Eclipse

org.lcsim: Compact Geometry Description

- org.lcsim uses "Comact Geometry Description" to define detector
 - Simple XML format for describing ILC detectors
 - Handles typical ILC detector geometries
 - Range of detectors handled is extensible (by writing Java modules)
- Allows rapid prototyping of new detector geometries
- Does not require network access or installation of database software to run
- Automatic generation of full Geant4 LCDD geometry for full compatibility with SLIC

org.lcsim: Geometry Converter

org.lcsim Conditions Data

- Provide access to a extensible set of conditions for each detector including:
 - Detector Geometry
 - Algorithm Specific Constants
 - E.g. FastMC smearing parameters
- Doesn't make assumptions about format of data
- Doesn't rely on internet access, or local database installation
- Detector Constants stored in .zip file
 - Typically contains:
 - Compact geometry file
 - Set of (ascii) constants for standard algorithms
 - Can additionally contain:
 - Arbitrary files (xml, ascii, binary) needed by other algorithms
 - Other geometry formats (HepRep, LCDD)
 - Full fieldmap
- To define a new detector just create a new .zip file.

Available Detector Descriptions

- Although detector descriptions can live anywhere we maintain a CVS repository of detector descriptions
 - Exported to org.lcsim web site for automatic download
- 40 detector variants as of July 2006
- Many SiD variants, but also some gld, ldc

You are welcome to contribute more

Org.lcsim Reconstruction

- Reconstruction package includes:
 - Physics utilities:
 - Jet finders, event shape routines
 - Diagnostic event generator, stdhep reader/translator
 - Histogramming/Fitting/Plotting (AIDA based)
 - Event Display
 - Processor/Driver infrastructure
 - Fast MC
 - Track/Cluster smearing
 - Reconstruction
 - Cheaters (perfect reconstruction)
 - Detector Response
 - CCDSim, Digisim
 - Clustering Algorithms
 - Cheater, DirectedTree, NearestNeighbour, Cone
 - Tracking Finding/Fitting Algorithms
 - □ TRF.
 - Muon Finding, Swiming
 - Vertex Finding (ZvTop)

org.lcsim: Contrib Area

- Goal of org.lcsim is not to provide "A single reconstruction package" but rather a framework into which reconstruction algorithms can be plugged.
- We encourage users to contribute code to the "contrib" area as soon as possible.
 - Important to encourage collaboration, reuse, and as learning tool.
- Many contributions added in last year:
 - HMatrix cluster analysis
 - VertexFitter
 - PFA algorithms/template
 - SODTracker
 - Garfield Tracker
 - Calorimeter Cell Ganging
 - FastMC improvements
 - Tracking finding/fitting
 - MIP Finder
 - Minimum Spanning Tree Clustering

org.lcsim results

(See many other talks at this workshop)

Using org.lcsim with JAS3

- The org.lcsim can be used standalone, withan IDE, or inside JAS3. Same code can be used in all modes, so easy to move back and forth
 - E.g. develop in IDE and run in JAS3
 - E.g. develop in JAS3 and run in batch
- JAS3 org.lcsim plugin adds:
 - Example Analysis Code
 - org.lcim Event browser
 - Easy viewing of analysis plots
 - WIRED event display integration

org.lcsim: Examples

org.lcsim: Examples

org.lcsim: Plot Viewing

Interoperability

How hard is it to get started with

org.lcsim?

- Works on Linux, MacOSX, Windows
 - Should take about 15 minutes to install JAS3 and org.lcsim plugin.
- Case Study: SLAC Summer student
 - 2 semesters of Java experience
 - (no C++, Fortran etc)
 - Using tutorial on Icsim.org Wiki; installed software, downloaded data, and got useful results in one day (and fixed a few errors in the documentation along the way).
 - Regular analysis updates have been appearing on her blog ever since!
- Even if you don't have Java experience you can get started almost as fast
 - (the only thing you will miss is the core dumps)
- Start here:
 - https://confluence.slac.stanford.edu/display/ilc/lcsi m+Getting+Started
 - Problems? Attend Tuesday afternoon "Simulation" phone meeting or use discussion forum at http://forum.linearcollider.org/

Becoming an org.lcsim developer

- To get started you just need "Java", "cvs", "maven"
 - Maven is a Java based project management tool
 - Single command "maven"
 - downloads dependencies, compiles code, runs tests, deploys code
- All code in CVS
- To check-out and build all code:
 - set CVSROOT="pserver:anonymous@cvs.freehep.org:/cvs/lcsim"
 - cvs co GeomConverter
 - cd GeomConverter
 - maven
 - □ cd ..
 - cvs co lcsim
 - cd lcsim
 - maven
- Find more documentation at:
 - http://lcsim.org/
 - Read/Contribute to the Wiki at: https://confluence.slac.stanford.edu/display/ilc/Home
 - Discuss at: http://forum.linearcollider.org/
- We strongly encourage developers to use IDE
 - Netbeans, Eclipse both free, easy to learn, very powerful
 - Use mevenide to teach IDEs about maven systen

Using org.lcsim with Netbeans

Where Next?

- Some clean-up of "Track/Track Parameters" and "Geometry" interface
 - Form org.lcsim clean-up "Task Force"
 - Jeremy and Jan Strube are seconded
 - Other volunteers welcome
- Complete Tracking/Vertexing packages
- Migrate some contrib code to main code base
- We are close to complete tracking/PFA/vertexing/flavor tagging chain.
 - Should create fully simulated/reconstructed data to complement Fast MC studies
- Interoperability
 - LCIO works nicely
 - Geometry interoperability remains elusive but highly desirable
 - Ability to call C++ (MarlinReco) modules from org.lcsim
 - Perhaps more possible with new version of SWIG

Conclusion

- org.lcsim Framework is mostly complete
 - If there are limitations which are impeding your work, let us know!
- User contributed reconstruction software growing rapidly
 - Several more contributions promised soon