Synchrotron radiation from 2mrad FD and backscattering from extraction line elements

T. Maruyama and A. Seryi

- Synchrotron radiation flux and power at the septum
- Photon flux backscattering to IP
- How it compares with the photon flux from pairs.

SR generations

250 GeV disrupted beam

250GeV/beam undisrupted beam

Turtle tracking + Analytical SR Ec + MATLAB

Seryi

Total loss: $\frac{dE}{E} = 0.0011578$ or $\frac{dE}{=}12.7356$ kW

Total loss to septum: <dE>=2.8275 kW, mean Ec=21.9458 MeV

SR rate at the septum

	Power (kW)	<Εγ> (MeV)	
250 GeV	2.5	11	
500 GeV	40.6	89	
250 GeV	3.0	9.5	
500 GeV	39.5	76	
250 GeV	2.8	9.8	
500 GeV	37.0	78	

SR Energy dist.

- TM disrupted beam
- AS disrupted beam
- AS undisrupted beam

 $N\gamma \sim B$

 $Ec \sim E_b^2 \times B$

SR backscattering to IP

- To estimate the photon flux within 2 cm BeamCal aperture.
 - Find the backscattering rate in
 -1 < cosθ < -0.9
 - Use the solid angle of the 2 cm aperture from z= 89m.

	Rate	#γs at IP/BX	#γs in SiTracker from pairs
250 GeV	1.1x10 ⁻⁸	2200	700
500 GeV	2.9x10 ⁻⁸	11700	1900

Conclusions

- SR power at the septum magnet is 2.5 kW @ 250 GeV and 40.6 kW @ 500 GeV.
- Backscattered photon flux at IP is 2200/BX @ 250 GeV and 11700/BX @500 GeV.
- The IP photon flux is x3 (250 GeV) and x6 (500 GeV) of the secondary photons from pairs.