

Photon Collider testbed at ATF2 ~a possible plan~

T.Takahashi Hiroshima Univ.

> May 31 2006 ATF2 meeting

Lasers for Photon Colliders

- have to meet
 - 5J/pulse
 - 337ns separaton 3000bunches/train
 - 5Hz

- simple estimate of cost for the laser
 - to pump 5J ×3000 pulses in 1ms

pumping power =
$$\frac{5J \times 3000}{1ms \times eff(0.3)} = 50MW \square \$250M$$

\$5/w

A recirculating cavity can simplify the laser by reducing the required power

Stacking cavity design from MBI / DESY- Zeuthen is designed to reach 9J per bunch

Gronberg

Laser requirements:

- 5 Hz operation
- 1000+2820 bunches / train
- 40mJ / pulse
- 764 W average power
- 119 kW peak diode power

The MERCURY laser already has more average power than we need

Pulse Stacking Cavity

- •need extensive R&D
 - power enhancement
 - •focus down to 5 mm

w/ 100 long ring cavity is challenging

tolerance is very small

Laser stacking cavity with **Two Spherical Mirrors**

Choice of R and spot size

L = 420.00 mm

resonator is stable here

\bigcap mori

Official	
Mirror R (mm)	rms laser spot size (micron)
250	88
211	35
210.5	30
210.1	20
210.01	11
210.001	6

R have to be exactly L/2

Step by step plan

- 1. Cavities for Compton based pol. e+ projects
 - Fabry-Perot type spherical mirror
 - Fabry-Perot type off-axis parabolic mirror
- 2. Extension of pol. e+ cavity
 - ×10 scale of Pol e+
 - ring cavity for 154ns spacing

4.62m
(1/10 of bunch spacing)

power

lasers

- 3. Cavity w/ high power laser at ATF2-IP
 - not possible at ATF-DR as high power laser is destructive target
- 4. 100m size will be tested w/o e- beam

Plan: Exprmntl R/D at ATF

Hiroshima-LAL-IPN-CERN-Kyoto-Waseda-KEK Omo

Make a fist prototype single cavity

 $L_{cav} = 420 \text{ mm}$

Put it in ATF ring

Laser Pulse Stacking Cavity Omori

Fabry-perot Resonator

Input laser (YAGlaser)
Energy 0.75 mJ / bunch
3.077 nsec bunch spacing
train length = 50 μsec

Cavity
Enhancement Factor =1000

Laser pulse in cavity
750 mJ/bunch
single bunch in a cavity

Ring cavity at ATF-DR

-after we learn a lot from PosiPol cavities-

Ring cavity+High power at ATF2-IP

Cavity can be the same as ATF-DR but the laser is not

we want 50mJ/pulse for the laser (5J/pulse in cavity)

Continuous pumping (64.9MHz)of the cavity is not wise: just for 20 bunches (for a train)

Average power = $50 \text{mJ} \times 20 \times \text{repetition} = \text{as low as } 1 \text{W (or less)}$

Peak laser pumping power =
$$\frac{50mJ \times 20}{1ms \times eff(0.3)} = 3.3kW$$

need mini-Mercury amplifier?

Possible Plan at ATF2-IP

IP Area

ATF2-Layout

Summary

Starting after pol e- experiment at ATF-DR

- ×10 scale cavity,,,- same level laser ,,,~\20M

- ATF2-IP
 - same cavity
 - same laser
 - install mini-Mercury

O(\$M?, M?)

€