SCRF Infrastructure for ILC

EGDE Meeting 10.5.2005 Lutz Lilje

Lutz Lilje DESY - MPY-

International Linear Collider

Disclaimer

- This relies on my memory from my Ph.D. thesis at CERN
 - More recent information from CERN needed
- This is my opinion
 - Some discussion with colleagues
- ... this might be politically incorrect

Overall Framework

- GDE Discussions
 - Effort needed
 - To make ILC-gradients more reproducible
 - Any step in Europe should be integrated in the larger R&D framework
 - Step toward a integrated systems test
 - At least the size of one RF unit, which determines the number of cavities to at least 30
 - To improve further knowledge transfer to industry
 - Large contribution of the XFEL
 - But: the XFEL will not have the time to explore all the parameter space (see below)
- FP7 preparation
 - A preparation for a bid should start now to avoid some late night working hours...
- Start discussion here

Primary goal:

Production of ILC prototype modules (4th generation) in Europe

- Scope
 - Should include all parts
 - Cavities
 - Couplers
 - Magnet
 - BPM
 - Cryostat vessel
 - Should include a next generation cavity preparation facility
 - Improve processes
 - Avoid bottlenecks

Production Goals ctd.

- Implementation:
 - Location
 - Makes sense to site this at existing TTF infrastructure here at DESY.
 - Additional manpower would be a pre-requisite
 - Alternatives:
 - CERN
 - Available (needs check):
 - 2K cryogenic-infrastructure
 - Vertical Teststands
 - Module Teststands (How many?)
 - Single-cell preparation infrastructure?
 - Surface science department in-house
 - Manpower?
 - Needed
 - Infrastructure for multi-cells with redundancy
 - RF Power
 - Others ?
- Qualified manpower is a critical issue on all levels (engineers, technicians)
- How 'free' could this expertise be in 2008+?
- How much additional manpower could be made available?

Lutz Lilje DESY -MPY-

L C International Linear Collider

Sketch of possible programme:

- Goals ILC Cryomodule Design

- 4th generation module
 - Quadrupole in the center
 - Shorter cavity spacing
- Module assembly capability
- Module testing capabilities
- Prototyping of cryostat vessel in European industry
- Implementation:
 - Finish design work as collaboration of INFN and DESY
 - ILC design finished in 2007?
 - Collaboration with other partners?
 - Assembly of modules
 - Need a cleanroom for string
 - » Could use refurbished CERN cleanroom in SM18
 - » could be at TTF?
 - Test facility without beam
 - Could refurbish CERN infrastructure in SM18
 - Could be extension to XFEL module test hall, then use single module test stand for ILC
 - If Beam test is needed somewhere (e.g. HOM damping), could be just a probe beam.

High-quality cavity production and preparation including full-power test

- Cavity design
 - Goals:
 - Compact with shortened beam tubes
 - Cavity shape options
 - Standard
 - Low-Loss
 - » full HOM design available now
 - Implementation
 - ILC LL complete design available soon
 - Design done at SLAC, DESY and others
- Material options
 - Goals:
 - Large-grain or single-crystal
 - Standard material
 - Implementation
 - Built 30 ILC-cavities and test

Lutz Lilje DESY - MPY-

International Linear Collider

High quality cavity production ctd.

- Cavity preparation
 - Goals
 - Improve preparation process
 - Improve EP (is a must...)
 - Etching needed (e.g. outside cleaning)
 - Improve Final cleaning
 - High pressure rinse (HPR)
 - » Online particle count integrated in drain water line
 - Dry-ice cleaning?
 - » Needs feasibility demonstration
 - Cleaning of parts
 - » Automation needed: screws used as example
 - Improved/novel methods of QA/QC
 - Implementation
 - Setup of new infrastructure
 - » DESY: Independent of TTF
 - » CERN: partial refurbishment might be an option
 - Modular setup
 - » Institutes get responsibility for part of the process (HPR design, EP design etc.)
 - Redundant setup
 - » 2 x EP,
 - » 2 x HPR,
 - » 2-3 120 °C bakeout stations
 - designated 800°C furnace
 - Sufficient pump stations, etc.

High quality cavity program ctd.

- Cavity testing capabilities
 - Goals :
 - Low-power and high-power individual cavity tests
 - Implementation
 - DESY: Extension of XFEL infrastructure or use TTF
 - CERN: Make SM18 1.3GHz compatible
 - Minor work cryostats
 - Improve pumps for 2K ?
 - RF system esp. for Pulsed operation
 - » obtain MBK from America

Cavity auxiliaries

- TTF-III coupler

- Goals
 - Lower cost
 - Even faster processing

Implementation

- Continue work at LAL Orsay
- Full synergy with XFEL

– Compact Tuner design

- Goals
 - Develop compact tuner
 - Including fast tuning (e.g Piezo)

• Implementation

- Blade tuner at INFN
- Compact lateral tuner at Saclay ? needs confirmation

ILC magnet design

– Goals

- Full design to ILC specs
- Follow discussions on ILC issues

- Implementation

- Continue work with CIEMAT
- Acquire magnets in America?

ILC BPM design

– Goals

- More compact re-entrant
- Eventually integrated (closely attached) to quadrupole

- Implementation

- Basic layout XFEL-like ?
 - Resolution sufficient ?
 - Continue CEA work
 - Need compact design

CERN Infrastructure (My guesses...): Cleanrooms

- LEP Module Cleanroom in SM18
 - Horizontal flow
 - Pre-assy Class 10000
 - 15m x 4m
 - Class 10-100:
 - 15m x 4m
 - Mobile laminar flow available
 - Smaller area for parts cleaning
- Cleanroom 252
 - Class 100 or better
 - 10mx5m
 - Pre-clean:3mx5m
- Small cleanrooms
 - Coupler assy

CERN infrastructure: Cryo Infrastructure in SM18

- Cryo Power:
 - 6 kW at 4.5K, 32 g/s liquid He
 - 2 kW at 1.8K, 12 g/s liquid
 - Pumping could be modified up to 20 g/s
- Vertical testing
 - 4 positions
 - 2 installed (4.5m height, 1m diameter)
 - 2 in stock
 - 2 installed (2.5m height 1m diameter)
- Module testing
 - 2 bunker for modules
 - 2 klystrons (with 352 and 400 MHz respectively)

CERN Infrastructures: Chemistry

- Búilding 118
 - Prepare LHC vacuum chambers
 - Chemistry
 - LEP infrastructure for etch exists
 - Small cleanroom
 - Glovebox?
 - Pure water rinse
 - 6 bar in lam. Flow class 100
 - HPR
 - 100 (-200) bar
 - Portable?
 - Valves

Time scales:

->2008

- Time scale would have this infrastructure running parallel to XFEL cryomodule production, which could provide 'mass production' feedback for foreseen ILC programme.
- some of the design work will be done until end 2007 by ILC worldwide
- setting up of preparation infrastructure is most time-consuming
 - if parts of TTF infrastructure can be used the cavity preparation can be started earlier
 - at CERN the adaptation of the infrastructure needs to be cross-checked but should be rather straight-forward

Money Scales (Warning: My Guess!)

- potential amount 30 MEUR (greenfield site)
 - Collaborations will probably still require to support 50% of the activities.
 - Budget would be allocated for

New cryostat vessels	
 Up to 3 modules 	6 MEUR
new cavities (>30)	
auxiliaries	
new infrastructure	
– RF	2 MEUR
– Cryo	
» Plant	5 MEUR
» Cryostats +low-power RF	5 MEUR
 Cleanroom (min.2 HDs) 	4 MEUR
» Assembly tooling	1 MEUR
 Chemistry 	3,5 MEUR
» EP (2 benches)	
» Etching	
 Furnace min.800°C 	1 MEUR
» Extras	5 MEUR
 manpower (new people) 	

Lutz Lilje DESY -MPY-

L C International Linear Collider

And Now For Discussion...

- I see two possibilities for such a facility
 - CERN refurbishment
 - DESY would need new construction and significant manpower
 - Cavity testing might start earlier by using existing facilities
- A participation by collaborating insitutes are hardware (e.g. EP system) or people
 - Any takers?

