XII International Conference on Calorimetry in High Energy Physics Chicago, June 5 - 9, 2006

The Fluorescence Detector of the Pierre Auger Observatory

A Calorimeter for UHECR

Bianca Keilhauer for the Pierre Auger Collaboration

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Forschungsuniversität · gegründet 1825 Deutsche Forschungsgemeinschaft

Cosmic Ray (CR) Spectrum

 power law over more than 10 orders of magnitude in energy

$$dN/dE \propto E^{-\gamma}$$

- below knee:
 - particles from the Sun and supernova remnants
 - mainly protons and α -particles
- at knee:
 - γ changes from 2.65 to 3.1
 - transition to heavier composition
- at **ankle** and above:
 - CR of extra-galactic origin
 - again change of γ
 - sources, particle types, GZK-cut off ???

Scientific goals of the Pierre Auger Observatory

- detection of Extensive Air Showers induced by UHECRs
 - $E_0 > 5 \cdot 10^{18} \text{ eV}$
 - high statistics
 - good understanding of systematics
- disentangle energy, incoming direction, type of primary particle
- full sky coverage
- anisotropy
- neutrino detection
- limit on photon flux
- provide hybrid detection technique

Hybrid Detection Technique

- longitudinal shower profiles by fluorescence light in atmosphere
- lateral particle distribution at ground

Why Hybrid Detection Technique ?

Surface Detectors

- 100 % duty cycle
- acceptance = geometric
- only last stage of shower development observed
- energy scale model dependent

Fluorescence Detectors

- **!** ≈ 15 % duty cycle
- acceptance depends on distance and atmosphere
- observation of longitudinal shower development
- (almost) model independent

Layout of Southern Observatory

CALOR 06

Auger Fluorescence Detectors

- 6 telescopes in a station
 6 x (30° x 28.6° field of view)
- 4 stations at the boundary of the array
- 3 stations ready, 4th under construction

Fluorescence Detector

CALOR 06

Fluorescence Detector

- 440 PMT per camera,
 - each $1.5^{\circ} \rightarrow$ resolution better 1°
- 15% duty cycle
- 100 ns sampling intervals
- energy resolution $\leq 10\%$

Water Cherenkov Tanks

- ≈ 1100 of 1600 tanks deployed
- distance 1.5 km to each other
- 12 m³ ultrapure water

Water Cherenkov Tanks

Electromagnetic Shower

- primary particle is electron or positron
- hadronic interaction yields in $\pi^0 \,{\rightarrow}\,$ decay into 2 γ

Hadronic Shower

- primary particle is nucleus
- for heavier nuclei superposition of A proton showers

Particle Numbers in EAS

Energy Deposit of EAS in the Atmosphere

CALOR 06

Shower Maximum

Correction Factor for "Missing Energy"

Efforts on reduction of uncertainties

R. Cester et al., 29th ICRC, 2005

T.Waldenmaier et al., 29th ICRC, 2005

absolut "dru

balloon launching station

Calibration

K. et al., 29th ICRC, 2005

Position of Shower Maximum

Fluorescence Light

- > mainly e^{\pm} of EAS excites N_2 molecules in air
- ➤ 18 strong emission bands in 2P system between 300 and 400 nm
- I strong emission band in 1N system between 300 and 400 nm
- ⇒ Fluorescence Yield

$$FY_{\lambda} = \varepsilon_{\lambda}(p,T) \cdot \frac{\lambda}{hc} \cdot \frac{dE}{dX} \cdot \rho_{air} \quad \left[\frac{\text{photons}}{\text{m}}\right]$$

with assumption $FY_{\lambda} \propto \frac{dE}{dX}$

Fluorescence Light

- > mainly e^{\pm} of EAS excites N_2 molecules in air
- ➤ 18 strong emission bands in 2P system between 300 and 400 nm
- ➤ 1 strong emission band in 1N system between 300 and 400 nm
- ⇒ Fluorescence Yield

Fluorescence Yield at sea level

for a 0.85 MeV electron in US Std. Atmosphere

Real EAS Event from Auger

Energy determination from hybrid events

- take S₃₈ value from SD vs. energy from FD
- fit line through data
 Log (E) = -0.79 + 1.06 Log(S₃₈)
- energy conversion factor

(E in EeV, S_{38} in VEM)

 $E = 0.16 S_{38}^{1.06}$

```
Uncertainty:
15% at 3 EeV
40% at 100 EeV
```

P. Sommers, Auger Collab. 29th ICRC, 2005

Cosmic Ray Spectrum "before Auger"

Cosmic Ray Spectrum with estimated "Auger Flux"

Estimated Spectrum

Uncertainties on the reconstructed energy from FD

- 1. signal in the PMTs
 - \succ light collection 5 %
 - detector calibration 12 %
- 2. photons at the FD
 - \succ geometry reconstruction (hybrid) 2 %
 - \succ aerosol levels 10 %
- 3. fluorescence photons emitted at the shower axis
 - atmospheric density profile 2 %
 - fluorescence yield 15 % \geq
- 4. energy deposit per slant depth
 - \succ correction for missing energy 3 %

5. primary cosmic ray energy < 25 %

J. Bellido, Auger Collab. 29th ICRC, 2005

Inprovements in

theneartiture

Summary

- Southern detector near completion
- First cosmic ray spectrum
- Multiple efforts on atmospheric monitoring and calibration
- 36 presentation and 1 highlight talk at the 29th International Cosmic Ray Conference, Pune, India, 2005
 - ⇒ just brief overview about science results presented

1º

That's also working for Auger

First estimate of the cosmic ray spectrum

- data set from January 1st 2004 June 5th 2005
- \bullet all events with zenith angle between 0° and 60°
- time average area = 660 km² (22 % of final size)
- Quality cuts:
 - core surrounded by equilateral triangle of working stations
 - station with highest signal has \geq 5 working nearest neighbours
- full efficiency above 3 EeV
- 3525 SD events above $10^{18.5} \text{ eV}$

Procedure

- 1. calculate energy from SD signal \rightarrow time-integrated water Cherenkov signal S(1000)
- 2. zenith angle correction Constant Intensity Cut method
- 3. use hybrid events for conversion of SD value to energy
- 4. calculate exposure of the growing array

CALOR 06

P. Sommers, Auger Collab. 29th ICRC, 2005

Error bars on points indicate Poisson statistical uncertainty (or 95% CL upper limit) based on the number of events.

Systematic uncertainty is indicated by double arrows at two different energies.

Horizontal: Systematic ΔE

Vertical: Exposure uncertainty

P. Sommers, Auger Collab. 29th ICRC, 2005

Estimated Spectrum

CALOR 06

Reconstruction of measured EAS profiles

Malargüe Monthly Models vs. US standard atmosphere

CALOR 06

Remaining Uncertainties within monthly models

- Malargüe Monthly Models modified by applying an 1σ error (day-to-day variations)
- uncertainty of **depth of maximum** ≈ 6 g/cm²
- uncertainty of primary energy ≈ 0.5 %

B.K. et al., Auger Collab. 29th ICRC, 2005

Auger Shower Profiles

Seasonal and Altitude dependence for Auger

for a 0.85 MeV electron

Energy Resolution of the Atmosphere - Energy Deposit at Shower Maximum -

