

VERITAS

Imaging Calorimetry at Very High Energies

June 6, 2006

Array System

- Description and status of VERITAS
- Air showers and the stereoscopic imaging technique
- Background rejection of hadronic showers
- Energy fitting

Astrophysics above 50 GeV

EGRET All-Sky Gamma-Ray Survey Above 100 MeV

Probing galactic and extragalactic acceleration processes, particle populations, and interactions

Blazars

Microquasars

n ???? Dark Matter? GRBs? Galactic Clusters?

Compact Binary Systems

Pulsar Wind Nebulae

Diffuse Galactic Emission

June 6, 2006

VERITAS

- System of 4 imaging air Cerenkov telescopes to detect -rays above >50 GeV
 - 12-m reflectors, 110 m² area
 - 499 PMT cameras, 3.5° fov,
 0.15° pixel spacing
 - 500 MHz FADC
 - 3 level trigger
 - **channel**: constant fraction discriminators, ~5 PE threshold
 - **telescope**: pattern of neighboring channels
 - array: coincident telescope triggers

VERITAS Status

- Constructing array at the basecamp of Mt Hopkins in AZ
- Running 2 telescopes
 now using array level
 trigger
- Will complete the array in Fall 2006
- Will run the 4
 telescope array at Mt
 Hopkins for 2 years

June 6, 2006

Imaging Air Showers

Primary Direction Simulated air shower using Corsika Shower Axis Red: Electromagnetic Green: Muons ~10 g/cm² at **Shower Parameters** Blue: Hadrons 30 km a.s.l. >Primary Type Primary Direction Interaction length TeV proton - air Primary Energy density $\sim 80 \text{ g/cm}^2$ increasing >First Interaction Depth $1/e^{(height)}$ Electromagnetic Shower Core Location radiation length • intersection of shower axis with \sim 34 g/cm² detector plane Cerenkov telescopes record 2D projections in angular space of the track of the shower through the atmosphere. ~800 g/cm² at 2 km a.s.l. Shower Core Image shape, orientation, and intensity depend on the shower parameters. **Impact Parameter** Camera Images

Shower Development

Gamma-ray >uniform shower development >higher Cerenkov light intensity >relatively symmetric >compact images without large fluctuations

Proton >lateral distribution >large fluctuations in shower development >lower Cerenkov intensity >less symmetric >broader images with fluctuations

Imaging Air Showers: Mono

GEO: c_x=0.43, c_y=-0.32, dist=0.53, length=0.1077, width=0.0481, a=0.10, size=232.19

GEO: c_x=-0.31, c_y=-0.38, dist=0.49, length=0.3774, width=0.2067, a=55.50, size=1412.46

Single telescope allows

Good constraint of primary direction, but determined statistically

Best fits for elliptical showers, R~50-100 m, higher energy

Some knowledge of core location

E/E ~30%

Imaging Air Showers: Stereo

- Array trigger eliminates local muon background
- Core Resolution ~10m
 - improves data quality cuts
 - hadron rejection
 - energy estimation E/E 15-20%
- Multiple images not 100% correlated
 - array provides several images favorable for determining shower parameters
 - Fits improve substantially for 3 telescopes in event
- Primary direction determined per event
 - Reconstruction resolution ~0.1°
- Primary energy, type, interaction height and shower max statistical

Background Rejection

Orientation still a powerful tool for point source analysis.

What about extended or diffuse sources?

- Rejection in trigger and image cleaning
 - Hadronic showers of same energy produce less Cerenkov light than electromagnetic showers (loss to and)
 - State of the art rejection still based on shape
 - Knowledge of the shower core improves things substantially
- Additional rejection potential
 - Shower symmetries (widths, lateral density profile...)
 - Timing

Energy Parameterization

Differential flux for Supernova remnant RX J1713-394 from H.E.S.S.

N_c ln(E)

But...this is only approximate. The atmosphere as a calorimeter is inhomogeneous and the Cerenkov angle varies with height.

And there are fluctuations in interaction height for gamma rays of a given energy.

Shower core and number of telescopes fitting the shower have a big impact.

Conclusions

- Stereoscopic imaging allows excellent determination of
 - primary direction
 - shower core
- Hadron rejection significantly improved
 - ongoing work for improved methods without use of direction
- Additional methods still to be exploited