

MICHIGAN STATE

Milagro, A Water Cherenkov Calorimeter for TeV Gamma Ray Astrophysics.

Aous Abdo For the Milagro Collaboration June 6, 2006, Chicago, USA

The Milagro TeV γ-ray Detector:

- Water Cherenkov detector Located in Jemez
 Mountains near Los Alamos NM
- > Elevation: 2630 m
- Central pond: 80m X 60m X 8m (depth) (5000 m²)
 - Top layer: 450 PMTs under 1.4 m
 - Muon layer: 273 PMTs under 6 m
- > Outrigger array: 175 4000 L water tanks
 - ~ 40,000 m²
- > 2 Steradians field of view
- > 1700 Hz trigger rate
- > > 90 % duty cycle
- > 0.6 0.3 degree PSF
- > 0.1 − 100 TeV energy range

The Central Pond

Los Alamos

NATIONAL LABORATORY EST. 1943

The Outrigger Array

Improved:

- > Angular Resolution by a factor of 1.4
- » Background Rejection
- Energy Resolution

Aous Abdo CALORIMETRY in HIGH ENERGY PHYSICS, June 5-9, 2006, Chicago, USA

Milagro: A TeV γ-ray Calorimeter

- > Atmosphere acts as an absorber:
 - > 750 g/cm² overburden (73% of Atmosphere)
 - > 20.5 X_o for gamma-ray showers and 8.3 λ_I for hadronic showers
- > Milagro is thus a "Tail catcher Calorimeter"
 - > Water as detection medium
 - > Detect Cherenkov light form secondary charged particles in the shower
- $\scriptstyle \scriptscriptstyle > Top$ layer: 4 X $_{\rm o}$ and 1.7 $\lambda_{\rm I}$
 - $ightarrow \gamma$, ightarrow e⁻ + e⁺ ightarrow Cherenkov radiate
- $\scriptstyle >$ Muon layer:17 X_o and 7.2 $\chi_{\rm I}$
 - Most EM charged particles get absorbed
 - > Muons with energy as low as 1.2 GeV penetrate and shower near the Muon layer

Event Reconstruction

Use nsec timing from each PMT hit to determine:

- Core Location
- Direction of Primary Particle

Background Rejection in Milagro

Muon Layer Images

Background Rejection (Cont'd)

Tests Of A₄ On The Crab Nebula

Crab Nebula in Optical Wave length band

A4 Weighting Analysis on the Crab Nebula

Combine A₄ with the weighting Analysis on 5 Years of Data

A₄ > 3.0

TeV Sky Map Survey 2006

A Closer Look at the Galactic Plane

Aous Abdo CALORIMETRY in HIGH ENERGY PHYSICS, June 5-9, 2006, Chicago, USA

Cygnus Region

Canadian Galactic Plane Survey - Far IR

Cygnus Region Spatial Morphology

- Crosses are EGRET sources
- Contours are EGRET diffuse model
- TeV/matter correlation good in Galactic latitude
- Brightest TeV Region
 - Coincident with 2 EGRET sources (unidentified) 3EG J2016+3657 3EG J2021+3716
- Hot Spot: 0.38+/- 0.17 degrees
- Analysis in progress

Spectral Determination

Spectral Determination (Cont'd)

- Bin Excess from data in A₄:
 Differentially
- Bin Gamma MC in A₄ for different spectral indices
- Fit differential excess from data to the different gamma MC distributions
- Calculate Chi Square for each fit
- Minimum Chi Square corresponds to Spectral Index of source

- A₄ is related to Energy
- 2-20 TeV useful range

Crab Nebula Spectral Determination

Spectral Index a

Conclusions

- The Muon layer of the Milagro detector is an imaging calorimeter that can be used to measure the lateral distribution of energy deposited in Milagro
- A simple algorithm to differentiate hadronic showers from gamma-ray showers has been developed. This simple cut, based on the A₄ parameter improves the sensitivity of Milagro by a factor of 2.
- All-sky survey has lead to significant discoveries
 - Diffuse TeV gamma-ray emission from the Galactic plane
 - Extended source in the Cygnus region at 12 σ in TeV gamma-rays
 - Diffuse emission from Cygnus region
 - Given the diffuse nature of the detected region, the "Cygnus Region" is the most luminous source of TeV gamma-rays in the northern sky

