

Overview of the CMS Hadron Calorimeter

Julie Whitmore Fermilab

HCAL Subdetectors

HCAL Barrel (HB)

Sampling calorimeter: brass (passive) & scintillator (active) Coverage: |η|<1.3 Depth: 5.8 λ_{int} (<u>a</u>t η=0) segmentation: $\phi \times \eta =$ π resolution: ~ 90 %/ \sqrt{E} 0.087×0.087 Completed & inserted into coil 200

17 layers longitudinally, φ x η = 4 x 16 towers

HCAL Endcap (HE)

Sampling calorimeter:brass (passive) & scintillator (active)Coverage:1.3< $|\eta| < 3$ Depth:10 λ_{int} segmentation: π resolution: $\sim 100\%/\sqrt{E}$ 0.087x0.087

Completed, assembled & installed

Optical Design for Calorimeters

Common Technology for HB, HE, HO

Installing Megatile

6 Channel FE Board

AD590

Custom ASICs

Low Voltage Regulator (2 / board) CERN Developed in rad hard process

Honeywell VCSEL HFE419x-521 (2/board) [back side of board]

CCA

(3 / board)

Fermilab

P82B715

MC100LVELT23

MC100LVEP111 LVPECL clock fanout chip

Gigabit Optical → Link [GOL] (2 / board) CERN Developed in rad hard process

June 7, 2006

T222A transistor

)P184 bi-polar OpAm

- Must respond to positive and negative inputs (HPDs and PMTs).
- High sensitivity inputs (1 fC/LSB for HPD)
- Wide dynamic range (MIP → 3 TeV [for single time slice])

Normal mode: 1 fC - 10 pC

- Very high sensitivity calibration mode (1/3 fC/LSB to track detector response shifts from radioactive source (200 e).
 - Calib Mode: Custom FADC with very low DNL

HCAL Pulse

 Nominal HCAL pulse spread over several 25ns buckets
Fraction in bucket is tunable via clock phase adjustment

Need to recover "event" concept, associate energy to a single crossing (bucket) and report it to the trigger

HCAL Pedestals

Pedestal RMS v. Slices Summed 3 Width relative to 1 CapID 2.75HB սուսութություն HE sqrt(N) 2.5HF 2.25 2 Pedestal RMS Distribution 1.75 1.5 Counts (no. channels) 1.25 60 1 50 -ŧ 8 20 10 18 12 -14 16 40 Number of CapIDs summed 30 20 HB 10 0 0.65 0.7 0.75 0.95 0.8 1.050.6 0.85 .9 0 rms1 Pedestal width capID 1

HCAL Source Calibration

Response of a scintillator tile as the radioactive source passes by it.

MTCC Goals

CMS general

 Magnet commissioning and mapping (First operation of the magnet)
Integration Plan Validation (First closing of the detector)
Sub-Detector technical verification. Test Alignment system. (First operation in 4T field)
Check entire detectorelectronics-DAQ-CPT chain

HCAL Specific

Cable and close detector. Study HB/HE gap. Operate the calibration system in 4T field. (wire sourcing). Measure scintillator brightening effect in 4 T field. Confirm no pixel x-talk in HPD (proximity focussing). Process data through complete software chain. Reconstruct muons with proper calibration constants.

B-field effects

Scintillator brightening

More light output in B-field.

HPD pixel cross talk due to electrons backscatter

No cross talk in B-field Electrons are trapped along B-field line.

MTCC: Muon Pulse Shape

Events above 10 fC, corrected for trigger jitter (max time-sliced forced to ts=10)

25

TB2006

Goal

- Measure performance of real CMS calorimeter. (2-300GeV) with real ECAL SuperModule and real ECAL readout
- System test of combined ECAL+HCAL system.
- Real-life input data for the development of calorimeter software
- Calibrate radioactive source with beam (HCAL) again to repeat TB2004.
- Study low energy beam data improvements
 - $e/\mu/\pi/K/P$ separation Cerenkov + TOF + μ Veto + ...
 - Cleaner beam (reduce/tag interactions in beam line)

Conclusions

- HCAL SX5 commissioning is almost done. HB/HE/HF source calibration completed. A calibration at the ~ 4% level exists for (HB/HE) and 5-7% for HF.
- HCAL Trigger electronics burn-in/integration nearing completion in Building 186 staging area. Move to USC55 underground area 6/06.
- We need to exercise DB and DAQ systems.
- The MTCC will establish systematic shifts measured separately on the bench to hold the preliminary calibration.
- TB2006 must confront G4 incisively (see Jordan Damgov's and Anwar Bhatti's talk).
 HGAL must perform a "calibration challenge". 28