The LHCf experiment at LHC

CALOR 2006 Chicago, 5-9 June 2006

Lorenzo Bonechi University and INFN - Firenze

On behalf of the LHCf Collaboration

The LHCf collaboration

- O. Adriani, L. Bonechi, M. Bongi, P. Papini, R. D'Alessandro
- G Castellini
- A. Faus, J. Velasco
- M. Haguenauer
- H. Matsumoto , H. Menjo, Y. Muraki, T. Sako
- K. Kasahara
- Y. Obata, T. Tamura, K. Tanaka, K Yoshida
- S. Torii
- A. Tricomi
- W.C. Turner

INFN and University of Firenze. Italy

- IFAC-CNR, Firenze, Italy IFIC, Centro Mixto CSIC-UVEG, Valencia, Spain Ecole Polytechnique, Paris, France Y. Itow, K. Masuda, Y. Matsubara, STE Lab., Nagoya University, Japan
 - Shibaura Inst. of Techn., Saitama, Japan Kanagawa University, Yokohama, Japan
 - Waseda University Japan INFN and University of Catania, Italy LBNL, Berkeley, California, USA

Chicago, 5-9 June 2006 - CALOR 2006

Outline

- Introduction
 - Problems in HECR physics: chemical composition, GZK cut-off
 - LHCf and HECR

The LHCf apparatus

- Beam test results
 - CERN 2004

• Summary and schedule - Toward the 2007 LHC operation

Chicago, 5-9 June 2006 - CALOR 2006

Introduction: cosmic ray composition

Different hadronic interaction models lead to different conclusions about the composition of the primary cosmic rays.

Development of atmospheric showers

• The dominant contribution to the energy flux is in the very forward region ($\theta \approx 0$)

• In this forward region the highest energy available measurements of π^0 cross section were done by UA7 (E=10¹⁴ eV, y = 5÷7) \longleftarrow $y = -\ln \tan \frac{\theta}{2}$

Summarizing...

Calibration of the models at high energy is mandatory

We propose to use LHC, the highest energy accelerator

7 TeV + 7 TeV protons 14 TeV in the center of mass $E_{lab}=10^{17} eV (E_{lab}=E_{cm}^2/2 m_P)$

Major LHC detectors (ATLAS, CMS, LHCB) will measure the particles emitted in the central region

> LHCf will cover the very forward part May be also in heavy ion runs????

Part 2

The LHCf apparatus

Chicago, 5-9 June 2006 - CALOR 2006

Chicago, 5-9 June 2006 - CALOR 2006

LHCf: general detector requirements

- 1. Single photon spectrum
- 2. π^0 fully reconstructed (1 γ in each tower)
- 3. Neutron spectrum

π^0 reconstruction is an important tool for energy calibration (π^0 mass constraint)

Basic detector requirements:

- \checkmark minimum 2 towers (π^0 reconstruction)
- ✓ Smallest tower on the beam (multiple hits)
- \checkmark Dimension of the tower \rightarrow Moliere radius
- ✓ Maximum acceptance (given the LHC constraints)

Installation of the detectors in the TAN absorbers at 140m from IP1

Part 3: beam test results

Necessary to verify the simulation (small tower 2x2 cm²: dimensions comparable with the Moliere radius!!!) SPS-H4 July-August 2004 2 TOWERS (2x2 and 4x4)cm² + Tracking system to determine the impact point on the towers

ELETTRONS	(50÷250) GeV/c
PROTONS	(150÷350) GeV/c
MUONS	(150) GeV/c

x-y Scan (study of the leakage effect as function of the distance of the particle impact point from the edges)

Prototypes under test

MAPMT and FEC for SciFi readout

10mm φ PMT HAMAMATSU H3164-10

4cm x 4cm tower

2cm x 2cm tower

Chicago, 5-9 June 2006 - CALOR 2006

Chicago, 5-9 June 2006 - CALOR 2006

Impact point reconstruction

Energy Resolution

LHCf: summary and schedule

- LHCf just approved: LHCC 16 May
- Physics performance:
 - able to measure π^0 mass with \pm 5% resolution.
 - able to distinguish the models by measurements of π^0 and γ
 - able to distinguish the models by measurements of n
 - Beam crossing angle ≠0 and/or vertical shifts of LHCf by few cm will allow more complete physics measurements
- Running conditions:
 - Three forseen phases
 - Phase I: parasitic mode during LHC commisioning
 - Phase II: parasitic mode during TOTEM low luminosity run
 - Phase III: Heavy Ion runs ?
- Beam Test in August 2006:
 - Full detector #1 will be tested
 - Part of detector #2 will be tested
- Installation starting from end of 2006

More slides

Chicago, 5-9 June 2006 - CALOR 2006

Detector # 1: layout

Detector # 2: layout

Transverse projection of detector #2 in the TAN slot

Chicago, 5-9 June 2006 - CALOR 2006

Energy resolution

LHCf performances: single γ geometrical acceptance

LHCf performance: π^0 geometrical acceptance

Chicago, 5-9 June 2006 - CALOR 2006

LHCf performance: energy spectrum of π^0

Lorenzo Bonechi

Chicago, 5-9 June 2006 - CALOR 2006

LHCf performance: π^0 mass resolution

LHCf performance: model dependence of neutron energy distribution

Original n energy

Estimate of the background

 beam-beam pipe
 → E_γ(signal) > 200 GeV, OK background < 1%

- beam-gas
- beam halo-beam pipe
 → It has been newly estimated from the beam loss rate
 Background < 10% (conservative value)

Chicago, 5-9 June 2006 - CALOR 2006

Particles from the beam pipe: background vs signal

chi