

Scintillator tiles

Scintillator

- optimize pad lateral size (!!!!)
- thinner tiles (e.g. 3mm), (!!!)?
- Other material for absorber ??
 - cheaper scintillator material (!!!!)
 - extrusion, no further treatment any more
 - No WLS-fibre, try for direct light RO?
 - Mega tiles (!!!), ~ m2 size?, Pad separation ?
 - Single tiles (??!!)
 - Combination of both (???)
 - Or large grids made from reflector material, to be filled with tiles, get rid of tolerances
- Need blue sensitive larger area photodetectors
- Need cheap direct optical coupling

Future: Photodetectors SiPM Applications increasing: PET, night vision, Astronomy, Space technologies, Safety Monitoring,...

- --Boris Dolgosheim: "Progress report on SiPM development its applications" www-flc.desy.de/flc/science/hcal/index.html CALICE Main Meeting, October 12.-14. 2005 --D. Renker, ETH Zuerich at Beaune Conf. on Photodetectors, June 2005 Development now at: • MEPHI/Pulsar (Moscow)
 - · CPTA, Obninsk, (GUS)
 - · JINR, DUBNA (GUS)
 - SensL, Ireland, EU R&D-funding, GlueX-BCAL
 - MPI- Muenchen
 - Hamamatsu (Japan)

Future: SiPMs, 2

Ongoing Si-PM R&D:

to reduce:

- noise rate, self triggering
- X-talk, resolution
- Operation bias voltage spread, cost/power
- Bias voltage ?? Power

to increase:

- geometrical efficiency,
- optical efficiency, in range of scintillation light,
- · larger gain would need less preamp power

More robust,

larger pixel size from 20 to $100\mu m$? larger detector size, from 1x1 to $2x2 mm^2$? Optimize the dynamical range needed for your experiment

Increase stability, reduce/manage T and V dependence ?

>>Can we read the scintillation light directly, without WLS? (this requires larger PD area)

>>Reduce costs to the a few Euro level for large quantities

V.Korbel, DESY

Direct coupling of SiPM and scintillator

2 examples, others could be poosible

Study on the 3cm x 3cm x 0.5cm tile

Where? Distribution of the emitted light from the scintillator: HOMOGENEITY

How? Technological improvement of the SiPM: EFFICIENCY

Light distribution studies

Geant 4 full simulation of the light propagation in the scintillation tile/photosensor module

6 GeV muons cross the tile

The light emitted on the surface is a factor 3 less than the one emitted on the edge

Setup for experimental verification of the MC studies in preparation

get rid of the local response nonuniformities

The reality

Gross talk)

Minimization of the influence of the background noise (caused by dark rate and cross talk) Pure Poisson statistics, with no cross-talk: 95% efficiency with mean 5 p.e./MIP and a threshold cut at 1.5 p.e. WANTED: In practice > 5 p.e./MIP

Increase of the area of the SIPM

Direct readout of blue emitting scintillation tile (3x3 cm, 5mm) with Teflon reflectors by "green sensitive" SiPM size 1x1 mm ~1100 microcells (CPTA Moscow)

Cosmic Muons

Mean value is 1.8 photoelectrons/mip (from Poisson Distribution)

3 × more light connection needed (AREA)

Light yield limits

New Hamamatsu SiPMs : after few production iterations, General features

400 pixels, larger, 1 x 1 mm2

Standard wavelength shifter green fiber coupling (HCAL)

Higher efficiency in the green: Due to change in the technology

The results from the last Batch

	311-32A-003-DESY-2	320-32A-007-DESY-1	320-32A-007-DESY-2	
	(69V)	(78V)	(78V)	
MIP response (px/MIP)	23.2(1)	36.6(3)	32.7(2)	
Gain (ADC ch./px)	14.1(3)	21.5(3)	21.2(4)	
dG/dU/G (%/V)	75(2)	47(1)	46(1)	

MEPHI Type was about 16 pixels/MIP

V.Korbel, DESY

Further studies on Hamamatsu SiPMs

The cross talk probability is the deviation from the Poisson distribution, decreases your resolution Cross Talk <10%, Dark Rate <500 KHz, Gain up to 6 10^5@ <77V

Hamamatsu SiPMs: blue sensitivity!

Direct coupling with a blue emission scintillator. No optical medium between.

Cosmic muons setup gives: 13.38(+-0.09) Pixels/MIP

<u>95% MIP efficiency, with a</u> <u>cut @1.5 pixels.</u> To conclude... direct coupling: where and how?

At the moment: green SiPM coupled with green fiber 15 pixels/MIP, ~1100 pixels -> ~80 MIP range (NOISE !!!)

Green sens.	~1.8 pixels/MIP	0.6 pixels/MIP (simulation)
~1100 pixels	factor 3 area needed	factor 9 area needed
(CPTA)	~200 MIP range (TOO MUCH!)	~200 MIP range (тоо мисн!)
Blue sens.	~13 pixels/MIP	~5 pixels/MIP (simulation)
~400 pixels	~29 MIP range	~80 MIP range
(HPK)	(TOO FEW!)	AT THE LIMIT (~ x2 needed)

V.Korbel, DESY

Future, Calibration

Calibration and monitoring

Do we need the LED/PIN system with light injection by fibres? What is the precision in energy resolution we get if we use MIPs only ??

MIPs from:
a) Halo
b) Cosmic
c) Branches in real events shower trees.
Simulation studies available, test beam results valuable!

How many MIPs or muons do we need for calibration?

threshold: 3 p.e.		repeats: 10000				
N _{p.e.} /MIP	Nevt	MIP efficiency	/ (%)	MIP res	olution (%)	Man
15	100	100.000 ± 0.0	000	2.65	± 0.21	cont
	500	99.988 ± 0.0	000	1.77	± 0.29	each
	1000	99.989 ± 0.0	000	1.24	± 0.14	
	5000	99.988 ± 0.0	000	0.55	± 0.03	
10	100	99.354 ± 0.0	008	3.59	± 0.52	
	500	99.361 ± 0.0)04	2.22	± 0.35	STAT
	1000	99.365 ± 0.0	003	1.56	± 0.17	
	5000	99.359±0.0)01	0.67	± 0.03	
				1		_
8	100	97.285 ± 0.0)16	5.06	± 1.36	
	500	97.244 ± 0.0)07	2.2	± 0.24	
	1000	97.256 ± 0.0	005	1.8	± 0.2	
	5000	97.252 ± 0.0)02	0.78	± 0.04	
					_	
6	no fit possible because of threshold					
	500	89.547 ± 0.0)14	4.35	+ 1.56	Nord
	1000	89.537 ± 0.0)10	2.94	±0.67	Need
	5000	89.534 ± 0.0)04	1.24	± 0.12	Calibr

Many cells contribute to each single event

Statistically reduced

Need MIPs for best Calibration, thus Efficiency should be high

V.Korbel, DESY

Calibration with MIPs

V.Korbel, DESY

Calibration with MIPs

50 GeV pions, 1 hit/plane

V.Korbel, DESY

Cell Calibration with MIPs

<u>Proposed Experimental Setup</u> (Illustration)

Hit spectra 6x6 cm² cells of one quadrant

Hit spectra 3x3 cm² cells of one quadrant

$12x12 \text{ cm}^2$ cells of one quadrant

V.Korbel, DESY

Cell Calibration with MIPs

Spectrum of fitted MIP peaks

Sample of all cells from one quadrant *MIP peak extracted by* 100 fitting hit spectrum is defined ЩŢ 90 in units of true MIP 80 70 60 *True MIP – peak in the* 50 distribution produced by 40 30

MIP particle penetrating cell @ angle 90°

Number of cells/0.005 20 10 0.95 1.05 1.1 1.15 1.2 1.25 A_{MIP}(fitted)/A_{MIP}(true)

Shift in peak value w.r.t. true

MIP position due to arbitrary angles ($\neq 90^{\circ}$)

at which MIP particles penetrate cells \rightarrow source of systematics?

Dynamic range, non-linearity

- Required dynamic range is ~ 50 -100 MIP
- Required calibration accuracy
 - ~ 20% for purely statistical variations
 - < 5% for systematic shifts
- Non-linearity < 5% (< 10% of pixels fired) translates into ~10'000 pixels (for LY = 15 px / MIP)
- We correct for non-linearity
 - Using uniform response function px=f_{resp}(ph.e)
 - Individual light yield of tile in px
 / MIP
- Successfully exercised with minical prototype

V.Korbel, DESY

The new SiPMs from Hamamatsu

Based on our now many years of experience with the first SIPMs Hamamatsu encourage us to do more detailed systematic measurements

- Bias voltage spread
- Increase of blue sensitivity
- noise (dark rate) reduction, we plan for o self-triggering detector
- Minimized inter-pixel cross-talk
- Gain vs preamp gain
- light yield (the response to a minimum ionizing particle (MIP) traversing the tile, measured in units of fired pixels), which provides a relative measure of photon detection efficiency
- Saturation, dynamic range
- Temperature dependence
- Radiation hardness, gammas (DESY, LINAC) and neutrons (Geesthacht??)
- Field test with a complete 216 channel calorimeter cassette
- Due to our very heavy duty in the 1m3 PT test, we invite collaborators to help us.
- All equipment is available for performance comparison

Time measurement in cells ?

- --SiPM have excellent timing performance, few psec level.
- --Scintillator- has larger shower radius than Gas-Calo.
- --Due to slow neutron component which fires

single cells, time measurement to exclude such hits.

RPC HCAL

Tile HCAL

Timing profile has fast component ~5ns and tail Fraction of visible deposited energy in the tail : 2% for RPC HCAL and 10-25% for tile HCAL Reason : lower sensitivity of RPC gas to slow neutrons

Advantage: ROB can be fully equipped on a test bench, housing a reference tile array and reference quartz fibres