

First data of the ANTARES Neutrino Telescope

Valentin Niess - CPPM-Marseille on behalf of the ANTARES Collaboration

CALOR 2006 Conference – Chicago – June 2006

Neutrino telescope: Detection principle

interaction

Reconstruction of μ trajectory (~ v) from timing and position of PMT hits

ANTARES Physics topics

- High energy neutrino astrophysics:
 Active Galactic Nuclei, Gamma Ray
 Bursts, Galactic Centre, SN Remnants,
 μ-quasars...
- Search for New Physics:
 WIMPs annihilations, Monopoles...
- Interdisciplinary Deep Sea Studies: oceanography, sea biology, seismology...

Bioluminescent Organisms

ANTARES Collaboration & detector site

The ANTARES detector

Basic detector element: storey

Expected performance (MC Studies)

Angular resolution better than 0.3° above a few TeV, limited by:

- > Light scattering + chromatic dispersion in sea water: σ ~ 1.0 ns
- > TTS in photomultipliers: σ ~ 1.3 ns
- > Electronics + time calibration: σ < 0.5 ns
- > OM position reconstruction: σ < 10 cm ($\leftrightarrow \sigma$ < 0.5 ns)

ANTARES Construction Milestones

the MILOM in operation since March 2005

CALOR'06 @ Chicago

CPPM

V. Niess

MILOM Singles Counting Rates

Coincidence rates from ⁴⁰K decays

Time calibration with the MILOM Led Beacon

MILOM

Time in OMs relative to reference PMT in OB

First complete detector Line installed in 2006

Line 1 deployed on Feb 14th...

First complete detector Line installed in 2006

RDI

...and connected by submersible ROV Victor from Ifremer on March 2nd

Line 1 time calibration with MILOM LED beacon

Chicago

CALOR'06 @

CPPM -

1

Niess -

Acoustic triangulation of Line 1 hydrophone

Reconstruction of atmospheric muon tracks

The first muon found with Line 1

Conclusions and Outlook

ANTARES made a major step forward during the last year

Detector working well within design specifications:

- Junction Box in operation since Dec. 2002
- Two lines delivering data on the site
- All technical problems solved
- ▶ 12 lines detector complete end 2007 :
 Operation for science ≥ 5 years

Milestone towards a KM³ underwater detector

Stay tuned for the first undersea neutrino !!

Water versus Ice

Deployment

Ice gives solid platform to install detector Sea experiments need boats/ platforms Ice detectors worked first (Baikal deploys from ice)

Angular Resolution

Light scattering much less in waterAMANDA: ~ 3° (real detector)ANTARES: ~ 0.2 ° (simulations)

Uniformity of Detector response

Water homogeneous Ice has dust layers, bubbles Knowledge of efficiency simpler in water

Noise Backgrounds

Water: ⁴⁰K /bioluminescence ~ 60kHz / PMT Ice: only dark tube noise ~ 500Hz / PMT

Region of sky observable by Neutrino Telescopes

AMANDA (South Pole)

ANTARES (43° North)

