The

Electromagnetic Calorimeter of the future PANDA Detector

AntiProton ANnihilations at DArmstadt

R. Novotny 2nd Physics Institute **University Giessen**

for the **PANDA** collaboration

CALOR 2006

PANDA at FAIR/GSI physics program experimental requirements * the detector concept of the EMC ★ the new generation of PbWO₄: PWO-II • the scintillation properties • thermal quenching response functions (PM- or APD-readout) ongoing R&D ***** status and time-schedule for operation

- 2 -

the GSI, Darmstadt (Germany): now and in near future

- double ring synchrotron SIS 100/300
- Collector Ring
- New Experimental Storage Ring
- HESR
- super **FR**agment **S**eparator

2.4/34 GeV/u U 740 MeV/u, A/q=2.7 740 MeV/u, A/q=2.7 0.8 – 14.5GeV antiprotons

CALOR 2006

the PANDA environment

CALOR 2006

- $\overline{\mathbf{p}}$ production similar to CERN
- **HESR** = High Energy Storage Ring
 - production rate 10⁷/s
 - $P_{\text{beam}} = 1.5 15 \text{ GeV}/c$
 - $N_{\text{stored}} = 5 \times 10^{10} \text{ p}$
- Gas-Jet/Pellet/Wire-Target
- High luminosity mode
 - $luminosity = 2 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$
 - $\delta p/p \sim 10^{-4}$ (stochastic cooling)
- High resolution mode
 - luminosity = 10^{31} cm⁻²s⁻¹
 - $\delta p/p \sim 10^{-5}$ (electron cooling)

physics objectives

- 5 -

June 05, 2006

aimed detector capabilities

- high count rates
 - $2 \cdot 10^7$ interactions/s ($\sigma \sim 55$ mb)
- vertex reconstruction
 - **D**, **K**_s, Λ, ...
- tracking in magnetic field
 - solenoid (2T), dipole (3.5T)
 - Δp/p ~ 1%
- charged particle ID
 - e[±], μ[±], π[±], p, ...
- EM calorimetry
 - γ, π⁰, η, ...
- forward spectrometry
 - leading particles
- complex triggers
 - e, μ, K, D, Λ
- modular design

CALOR 2006

hypernuclei studies

- 6 -

target spectrometer

CALOR 2006

- 7 -

electromagnetic calorimeter

EMC

CALOR 2006

- 8 -

EMC detector material: PbWO₄ (PWO)

- ✓ compact:
- fast:
- ✓ radiation hard:
- $X_0 = 0.9 \text{ cm}, R_M = 2.2 \text{ cm}$ $\tau < 10 \text{ ns}$ slight reduction of optical transmission monitoring ✓ readout in magnetic field: $\lambda = 420$ nm, adapted to APD
- **good energy resolution:** down to 10 20 MeV ?
- **barrel**: 11360 crystals forward endcap: 6864 crystals backward endcap: 816 crystals

June 05, 2006

optimization of PbWO₄ in collaboration with RINP, Minsk and the manufacturer BTCP at Bogoroditsk, Russia

✓ reduction of defects (oxygen vacancies)
 ✓ reduced concentration of La-, Y-Doping
 ✓ better selection of raw material
 ✓ optimization of production technology

scintillation mechanism

extreme short decay time (even at -25°C)
no slow components

CALOR 2006

optical quality

wavelength / nm

 extreme homogeneity along the full crystal length of 20cm

no absorption bandslow absorption edge

June 05, 2006

luminescence yield

60 prototype crystals for PANDA ✓ mass production possible

✓ doubled light yield

CALOR 2006

CALOR 2006

- 13 -

radiation hardness

dose: 10^{13} protons $E_p = 90$ MeV (*a*) KVI, Groningen

wavelength / nm

- 14 -

 \checkmark no permanent damage due to defect formation

- \checkmark activation due to proton induced reactions
- \checkmark reduction of optical transmission

monitoring mandatory

June 05, 2006

- 15 -

response to high energy photons

CALOR 2006

$64 \text{ MeV} < E_{\gamma} < 520 \text{ MeV}$

3x3 Matrix PM-Auslese 20x20x200mm³

EMC

CALOR 2006

readout with Large Area Avalanche Photo Diodes (LAAPD)

in collaboration with Hamamatsu Photonics

18mm

- 17 -

- excellent performance at RT and T = -25°C
- radiation resistent up to 10¹³ protons in particular at T = -25°C

• preamplifier development

10x10mm² 5x5mm²

EMC

energy resolution

time resolution central module versus *tagger*

2,0 1,5 $T = -25^{\circ}C$ 1,5 0,5 0,5 0,0 0,2 0,4 0,6 0,8 1,0 0,8 1,0 0,5 0,0 0,2 0,4 0,6 0,6 0,8 1,0 0,8 1,0 0,8 1,0 0,6 0,8 1,0 0,8 1,0 0,8 1,0 0,6 0,8 1,0 0,6 0,8 1,0 0,6 0,8 1,0 0,6 0,8 1,0 0,6 0,8 1,0 0,6 0,8 1,0 0,6 0,8 1,0 0,6 0,8 1,0 0,6 0,8 1,0 0,6 0,8 1,0 0,6 0,8 1,0 0,6 0,8 1,0 0,6 0,8 1,0 0,6 0,8 1,0 0,6 0,8 1,0 1,01,0

excellent resolution in spite of

- incomplete matrix
- shower leakage (3x3)

no optimum setup, but:
σ_t < 1ns above E_γ ~150MeV
fast calorimetry, PID

CALOR 2006

EMC

calorimeter to be operated at – (25.0±0.1)°C !

• cooling

temperature stabilization

CALOR 2006

- very complex and ambitious detector
- concept mostly fixed, but R&D still ongoing:

cooling technology FE-electronics (ASIC), large dynamic range energy and timing information photosensor of forward endcap (APD/VPT)

EMC very advanced – design to be fixed in middle of 2007

ordering crystals in 2008

- PANDA detector to be completed in 2011
- 2012: start of operation of PHASE 1

bout Names O, Panda Falls

spokesperson:Ulrich Wiedner - Bochumdeputy:Paola Gianotti - LNF

June 05, 2006

PANDA Collaboration

Universität Basel, IHEP Beijing, Ruhr-Universität Bochum, Universität Bonn, Università di Brescia + INFN, Università And Erlangen M And Erlangen M And Frascati, INFN Sezi di Genova, Universität O Groningen, Institut FZ Jülich Value N, IPN Orsay, Universität Münster, N, IPN Orsay, Universität Münster, N, IPN Orsay, Universität di Pavia, PNPI And Contensity, Università di Torino Linit Università di Trieste + INTE Uppsala Linit Valencia, Stefan Meyer Institut für subatomare Physik, Vienna, SINS Warschau

15 countries – 47 institutes – 370 scientists

- 21 -