Simulation of the HERMES Lead Glass Calorimeter using a LUT

A. Vandenbroucke¹ C.A. Miller² On behalf of the HERMES Collaboration

¹Department of Subatomic and Radiation Physics University of Gent,Belgium

> ²TRIUMF Vancouver, Canada

XIIth International Conference on Calorimetry in High Energy Physics, Chicago, June 2006

1/26

Outline

Introduction

- The HERMES Experiment
- Design of the HERMES Lead-Glass Calorimeter

Simulation of the Lead Glass Calorimeter

- Description of the Simulation
- Implementation of the Algorithm

Results of the Simulation

Different particles and observables

CALOR06

2/26

Outline

Introduction

- The HERMES Experiment
- Design of the HERMES Lead-Glass Calorimeter

2 Simulation of the Lead Glass Calorimeter

- Description of the Simulation
- Implementation of the Algorithm

Results of the Simulation

Different particles and observables

3/26

The HERMES Experiment

 HERA
→ MEasurement of Spin

- Spin like Charge fundamental property
- Experiment at DESY Hamburg
- 27,5 GeV longitudinally polarised *e*[±] from HERA accelerator
- Running since 1995

HERMES Physics A Very Short Overview

Semi-Inclusive Physics: $e + p \rightarrow e + \pi^{\pm}/K^{\pm} + X$ $\Rightarrow x \cdot \Delta q(Q^2, x)$

3 Exclusive Physics: $e + p \rightarrow e + \gamma + p$ $\Rightarrow J^q(x, Q^2)$

HERMES Physics A Very Short Overview

- Inclusive Physics: $e + p \rightarrow e + X$ $\Rightarrow x \cdot g_1(Q^2, x)$
- Semi-Inclusive Physics: $e + p \rightarrow e + \pi^{\pm}/K^{\pm} + X$ $\Rightarrow x \cdot \Delta q(Q^2, x)$
- 3 Exclusive Physics: $e + p \rightarrow e + \gamma + p$ $\Rightarrow J^q(x, Q^2)$

- Inclusive Physics: $e + p \rightarrow e + X$ $\Rightarrow x \cdot g_1(Q^2, x)$
- Semi-Inclusive Physics: $e + p \rightarrow e + \pi^{\pm}/K^{\pm} + X$ $\Rightarrow x \cdot \Delta q(Q^2, x)$
- Sector Exclusive Physics: $e + p \rightarrow e + \gamma + p$ $\Rightarrow J^q(x, Q^2)$

 $\frac{1}{2} = \Delta \Sigma + L_q + J_g$

| ▲ 글 ▶ _ 글| 글

The HERMES Spectrometer

Vandenbroucke, Miller (Gent, TRIUMF) HERMES PB-Glass Calorimeter Simulation

```
CALOR06 6/26
```

The HERMES Spectrometer

Introduction

- The HERMES Experiment
- Design of the HERMES Lead-Glass Calorimeter

2 Simulation of the Lead Glass Calorimeter

- Description of the Simulation
- Implementation of the Algorithm
- Results of the Simulation
 - Different particles and observables

7/26

Preshower - Calorimeter combination

- Serves as a first level trigger
- Electron/Hadron Separation (preshower removes π background)
- Identify π^0 through its decay in $2\gamma's$
- Give a coarse position estimation

Design of the HERMES EM Calorimeter

- Calorimeter was build by LNF,NIKHEF, and YPI.
- Build out of $2 \times 42 \times 10$ Lead Glass F101 blocks (Rad. Hard)
- Block Surface of 9×9 cm (> 90% of lateral shower profile)
- Block Length of 50 centimeter (\sim 18 \times Radiation length)

Chemical Composition F101	weight %
PB_3O_4	51.23
SiO ₂	41.53
K ₂ O	7.0
Ce	0.2
Radiation Length	2.78 cm
Critical Energy	17.97 MeV
Refraction index	1.65
Molière Radius	3.28 cm

Vandenbroucke, Miller (Gent, TRIUMF) HERMES PB-Glass Calorimeter Simulation

Introduction

- The HERMES Experiment
- Design of the HERMES Lead-Glass Calorimeter

2 Simulation of the Lead Glass Calorimeter

- Description of the Simulation
- Implementation of the Algorithm

Results of the Simulation

Different particles and observables

10/26

New physics requires a better simulation

New physics requires a better simulation

New physics requires a better simulation

11/26

New physics requires a better simulation

11/26

-

New physics requires a better simulation

Effects to the Cherenkov Light

From Cherenkov Light To Photo-Electron

- Reflectivity of the foils
- Transparancy of the Lead Glass
- Reflection at all surfaces (including glue)
- Quantum Efficiency PMT

Measurements at U. Hamburg

3 X X 3 X 3

From Cherenkov Light To Photo-Electron

- Reflectivity of the foils
- Transparancy of the Lead Glass
- Reflection at all surfaces (including glue)
- Quantum Efficiency PMT

-

Effects to the Cherenkov Light

From Cherenkov Light To Photo-Electron

- Reflectivity of the foils
- Transparancy of the Lead Glass
- Reflection at all surfaces (including glue)
- Quantum Efficiency PMT

▲ 글 ▶ _ 글

Effects to the Cherenkov Light

From Cherenkov Light To Photo-Electron

- Reflectivity of the foils
- Transparancy of the Lead Glass
- Reflection at all surfaces (including glue)
- Quantum Efficiency PMT

From Cherenkov Light To Photo-Electron

- Reflectivity of the foils
- Transparancy of the Lead Glass
- Reflection at all surfaces (including glue)
- Quantum Efficiency PMT

 \Rightarrow

Stand Alone (G4 Based) Monte Carlo

Lookup Table

Determining the LUT dimensionality

- Cherenkov angle $\cos(\theta_c) = \frac{1}{\beta \cdot n}$ is velocity dependent
- Cherenkov radiation forward and backward
- Amount of Reflections dependent on the (x, y) position

Determining the LUT dimensionality

- Cherenkov angle $\cos(\theta_c) = \frac{1}{\beta \cdot n}$ is velocity dependent
- Cherenkov radiation forward and backward
- Amount of Reflections dependent on the (x, y) position

⇒ 6 DIMENSIONAL LUT CONTAINING $PE(x, y, z, p_{\theta}, p_{\phi}, \beta)$

13/26

Introduction

- The HERMES Experiment
- Design of the HERMES Lead-Glass Calorimeter

Simulation of the Lead Glass Calorimeter

- Description of the Simulation
- Implementation of the Algorithm

Results of the Simulation Different particles and observable

14/26

Interpolating the Table

- Having a 10 × 10 × 16 × 40 × 10 × 16 grid, we want the right number of PE (per mm e[−] track length) for any (x₁ · · · x₆) ∈ the grid
- The most simple case is to extend a linear algorithm to 6 dimensions, yielding 2⁶ – 1 interpolations.

 The CERNLIB FINT algorithm based on linear interpolation has been extended to 6 dimensions.

CALOR06

15/26

Interpolating the Table II

- Another method is the simplex method. Supposedly the fastest method possible[1].
- A hypercube around the point x_i is normalized to the n-dimensional unit cube
- The unit cube then can be further divided into simplexes. An *n*-simplex is a *n*-dimensional analogue of a triangle, eg a tetrahedron.

 Problem reduced to find the right simplex and n + 1 function evaluations.

Vandenbroucke, Miller (Gent, TRIUMF) HERMES PB-Glass Calorimeter Simulation

CALOR06 16 / 26

Interpolation Comparison

Introduction

- The HERMES Experiment
- Design of the HERMES Lead-Glass Calorimeter
- 2 Simulation of the Lead Glass Calorimeter
 - Description of the Simulation
 - Implementation of the Algorithm

Results of the Simulation

Different particles and observables

18/26

Electron initiated showers in the Calorimeter only

- Longitudinal Energy Deposition for perpendicular incidence -

Electron initiated showers in the Calorimeter only

- Longitudinal Energy Deposition for perpendicular incidence -

- Error bars = RMS of distribuition
- Resolution limited by shower fluctuations !
- NIM157 (1978) 455-460 reports an improved resolution when using a blue filter !

Checking the interpolation

- Generating 100 GeV muons at different (x, y) positions \perp incidence -

Vandenbroucke, Miller (Gent, TRIUMF) **HERMES PB-Glass Calorimeter Simulation**

Comparing to data: E/P leptons

- Generating e⁻ from the vertex -

CALOR06 21 / 26

Comparing to data: Photons

– Generating γ from the vertex –

No data to compare with !

• Falloff due to cubic correction for the preshower

Comparing to data: Photons

– Generating γ from the vertex –

Comparing to data: π^0 - Blue: data, Red: MC -

Vandenbroucke, Miller (Gent, TRIUMF) **HERMES PB-Glass Calorimeter Simulation**

э CALOR06 23/26

-

Comparison HMC/G3 - Standalone G4 Not everything perfect !

- G4 and HMC/G3 simulation give a good overall agreement for muons
- For electrons HMC/G3 gets about 13% more photo-electrons than G4, while getting about 6% more Cherenkov Photons
- A difference in escaping energy between G4 and HMC/G3 has been observed
- Total shower track length is different as well

▲ 글 ▶ _ 글| 글

Comparison HMC/G3 - Standalone G4 Not everything perfect !

- G4 and HMC/G3 simulation give a good overall agreement for muons
- For electrons HMC/G3 gets about 13% more photo-electrons than G4, while getting about 6% more Cherenkov Photons
- A difference in escaping energy between G4 and HMC/G3 has been observed
- Total shower track length is different as well

Comparison HMC/G3 - Standalone G4 Not everything perfect !

- G4 and HMC/G3 simulation give a good overall agreement for muons
- For electrons HMC/G3 gets about 13% more photo-electrons than G4, while getting about 6% more Cherenkov Photons
- A difference in escaping energy between G4 and HMC/G3 has been observed
- Total shower track length is different as well

- The HERMES electromagnetic calorimeter has been simulated using a 6 dimensional LUT generated by a standalone G4 MC
- Comparison with data shows a good agreement for E/P electrons and π⁰ invariant mass spectrum
- Differences between G4 and HMC/G3 observed

25/26

R. Ravotti et al.

'A Geometric Apporach to Maximum-Speed n-Dimensional Continuous Linear Interpolation in Rectangular Grids' IEEE Trans. on Comp. Vol 47 (1998), 894-899

H. Avakian et al.

'Performance of the electromagnetic calorimeter of the HERMES experiment' NIM A417 (1998), 69-78

26/26