A Hadron Calorimeter with Resistive Plate Chambers

José Repond Argonne National Laboratory

CALOR 2006, Chicago, June 5 – 9, 2006

Within the paradigm of PFAs

Role of calorimeter is to measure energy of neutrals (γ 's, neutrons and K_L⁰)

Major challenge is to disentangle energy from charged and neutral particles in a jet

Keeping the 'confusion' under control is more important than optimization for single particle resolution

Requirements for the Hadron Calorimeter

1) Extremely fine segmentation of the readout

- \rightarrow O(1 x 1 cm² laterally, layer by layer longitudinally)
- \rightarrow Large number of channels \rightarrow requires multiplexing early on \rightarrow reliable electronics located inside calorimeter

2) Located inside high – field coil

- \rightarrow operation in high magnetic field
- \rightarrow thin active element (cost of coil!)

3) Active element with large area

- \rightarrow O(5,000 m²)
- \rightarrow affordable technique (silicon most likely not possible)

Resistive Plate Chambers

are...

Simple, robust, cheap, quiet, well understood, reliable Adaptable to different requirements (TOF, high efficiency, large area...)

No ageing ever observed with glass RPCs

Pick-up pads

Can be small: O(1 mm) Can be stripes or pads

RPC: Design Choices for HCAL

Resistive plates

Glass with a thickness of 1.1 mm Commercially available Bulk resistivity $\rho \sim 4.7 \cdot 10^{12} \Omega$ cm

Resistive paint

Surface resistivity $\sigma \sim 50 \text{ M}\Omega/\Box$ Applied with silk screening techniques

Gas gap

Defined fishing lines \rightarrow 1.2 mm

Operation in

Avalanche mode

Gas mixture

95:5:0.5 = R134A:Isobutane:SF₆

Readout pads

Squares with an area of 1 x 1 cm²

Explored 2 different designs

A) Standard Design: AIR5

2 glass plates: cathode and anode

RPC tests

cosmic rays and analog (=multi-bit) readout

4

2

Avalanche Charges

9 10 1 High Voltage (KV)

11

Measurement of pad multiplicity for different **MIP** detection efficiencies (adjustment of threshold)

and streamer fraction

RPC tests

cosmic rays and digital (=single-bit) readout

Noise rate versus threshold

MIP detection

rate

RPC tests

particle beams and digital (=single-bit) readout

Tests at MTBF (FNAL)

120 GeV/c protons

Set-up off beam axis \rightarrow high particle multiplicity

Unintentional!

Trigger selects events from upstream showers Complicated correction procedure applied to determine efficiency and pad multiplicity

MIP detection efficiency

MIP detection efficiency versus trigger rate

Conclusions from RPC tests

Large signals in avalanche mode

Q in the range 100 fC \leftrightarrow 2 pC

MIP detection efficiency very high

 $\epsilon_{\rm MIP}$ close to 100%

Pad multiplicity

Lower with single-bit readout (short integration time) Standard design ~1.6 for an ε_{MIP} = 95% Exotic design ~ 1.1 for any ε_{MIP}

Noise rate very low

 $N_{noise} < 1 \text{ Hz/cm}^2$

Rate capability limited

 $\epsilon_{\rm MIP}$ drops for dN/dt > 50 Hz/cm² Probably an underestimation

Chambers perform as

required for the active

element of a hadron

calorimeter

Chambers technology in hand to proceed to the construction of a prototype calorimeter

Results from cosmic rays and test beams are consistent

HCAL R&D Goal

Prototype section (PS)

1 m³ (to contain most of hadronic showers)
40 layers with 20 mm steel plates as absorber
Lateral readout segmentation: 1 cm²
Longitudinal readout segmentation: layer-by-layer
Instrumented with Resistive Plate Chambers (RPCs) and Gas Electron Multipliers (GEMs)

Motivation for construction of PS and beam tests

Validate RPC and GEM approach (technique and physics) Validate concept of the electronic readout Measure hadronic showers with unprecedented resolution Validate MC simulation of hadronic showers Compare with results from Scintillator HCAL

Comparison of hadron shower simulation codes by G Mavromanolakis

Electronic Readout System for Prototype Section

40 layers à 1 m² \rightarrow 400,000 readout channels

More than all of DØ in Run I

- I Front-end ASIC and motherboard
- II Data concentrator
- III Super Concentrator
- IV VME data collection
- V Trigger and timing system

The DCAL chip

Specifications

Developed to readout digital (hadron) calorimeters

- 64 inputs with choice of input gains
- \rightarrow RPCs (streamer and avalanche), GEMs...
- Triggerless or triggered operation

100 ns clock cycle

Output: hit pattern and time stamp

History of development

Designed by FNAL

Prototype run submitted on March 18th 2005

- \rightarrow 40 unpackaged chips
- 2 chips mounted on test boards (wire bonded)

Extensive tests began in July 2005...

Chips perform as expected

Redesign started for 2nd (and last) prototype submission

 \rightarrow Decrease sensitivity of front-end

Remainder of the system

Front-end boards

Prototype boards tested Cross talk between digital and analog lines ~ 11 fC Better grounding schemes being investigated

Data concentrator boards

Readout 12 front-end ASICs Provide clock, trigger etc. to front-end Design work started

Back-end

Several options being evaluated

1) Use of CALICE Tile-cal back-end

2) Use of BTeV back-end at MTBF

3) Develop new system

Slice test

Uses the 40 DCAL ASICs from the 2nd prototype run

Equip ~8 chambers with 4 DCAL chips each

256 channels/chamber ~2000 channels total

Chambers interleaved with 20 mm steel absorber plates

Electronic readout system identical to the one of the prototype section

Tests in MTBF beam planned for January 2007

 \rightarrow Measure efficiency, pad multiplicity, rate capability of individual chambers \rightarrow Measure hadronic showers and compare to simulation

Validate RPC approach to calorimetry Validate concept of electronic readout

Future Developments beyond the Prototype Section

Resistive plate chambers

More tests with exotic design (thinner!)

Increase sensitivity to neutrons (gadolinium?)

Long term tests (years)

Electronic readout

Finer segmentation of readout	$1 \times 1 \text{ cm}^2 \rightarrow ?$
Finer timing resolution	100 ns → ?
Thinner front-end boards	~ 3 mm \rightarrow 1 mm?
Higher multiplexing at front-end	$64 \rightarrow ?$ Channels/ASIC
Higher multiplexing at back-end	Token rings?
Power pulsing of front-end	Eliminate need for cooling

Experience with prototype section will provide specific guidance

Train structure of ILC beams

Nominal baseline design

2820 bunches/train 307.7 ns bunch length 5 trains per second

Collisions during 0.43% of running time

Turn power down between collisions

Power consumption negligible No cooling needed

Conclusions

- Application of PFAs require fine grained calorimeters
- ► Resistive Plate Chambers provide an excellent choice for the active media of the HCAL
- ▶ R&D on the chambers is completed with tests using cosmic rays as well as test beams
- Preparation for a slice test are under way
- ► Assuming
 - a) the slice test is successfulb) funding is being provided
 - construction of 1 m³ prototype section will initiate in 2007
- ► First results from tests in particle beams are expected by 2008
- ► R&D beyond the prototype section will start soon...

