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Outline :

e What is the problem?
e How to deal with it?

e Examples from practice

e (Conclusions



LESSONS FROM 25 YEARS OF R&D

e LESSON I: Energy resolution i1s determined by fluctuations,
not by average values

e LESSON 2: Digital calorimetry has been tried and abandoned, for good reasons

e LESSON 3: A narrow signal distribution is useless if the mean value is incorrect
Correct energy scale is at least as as important as good resolution

® LESSON 4: Longitudinal segmentation means asking for (calibration) trouble

e LESSON 5: GEANT based MC simulations of hadronic shower development
are fundamentally flawed —— useless as design tool

® LESSON 6: If you want to improve hadronic calorimeter performance
— reduce/eliminate the (effects of) fluctuations
that dominate the performance :

i) Fluctuations in the em shower fraction, f,,,
ii) Fluctuations in visible energy (nuclear binding energy losses)



Calibration of calorimeter systems
e Determine relationship between signal (pC, p.e.) and energy (GeV)

o Fundamental problem in sampling calorimeters.
Different shower components are sampled differently

Shower composition changes as shower develops
—> Sampling fraction changes with the shower age (also E dependent)

How to intercalibrate the sections
of a longitudinally segmented calorimeter?



The sampling fraction changes as shower develops *
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Fraction of the shower energy (“o)

Electromagnetic showers.
The importance of SOFT shower particles
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The composition of em showers.

Shown are the percentages of the energy of 10 GeV
electromagnetic showers deposited through shower
particles with energies below | MeV ( dashed curve).
below 4 MeV (the dash-dotted curve)

or above 20 MeV (the solid curve). as a function of
the / of the absorber matenial.

Results of EGS4 sumulations.



Range of Compton/photoelectrons in calorimeter materials

10 —— .
- o
s - 9 o
— , polystyrene
_.__f-'
= R
S P
L T e e
Cw .ﬂ"ﬁ‘ _,.—'_.-_.
@ ,,/“r-r -~ il
o, ] e
S b---~To---op
= P Compton
S .
g - e scattering
U i dominates
= . : in Pb
.-*~ Photoelectric
. effect dominates
in Pbh
0.01 L - -
100 1000

Photon energy (keV)

NB.
About half of the
total em shower
energy is deposited
by photons in this
energy range!

GP‘_E_ o Z 4.5



What is the problem? (summary)

» Shower particles contributing to the signals of sampling
calorimeters typically have a range that is much smaller
than the distance between sampling layers
=> Only small fraction of shower particles contribute to signal!

« Signal of a sampling calorimeter is sum of signals from
individual contributing shower particles (N “mips”)

» The energy equivalent of one signal unit (“mip” ) varies
with the depth of the shower, in an energy dependent way

- [f shower energy is distributed over several calorimeter segments,
how to determine then the energy equivalence of the signals in

these individual segments???



CALIBRATION MISERY

Consequences of depth dependence sampling fraction
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A widely used technique for calibrating segmented devices
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Calibrating longitudinally segmented calorimeters
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FIG. 6.2. The fractional width ¢/ F of the signal distributions for electrons (a) and pions (b)
of different energies, as a function of the value of the intercalibration constant B /A of the
HELIOS calorimeter system. The dashed line corresponds to the intercalibration constant
derived from muon measurements [Ake 87].



Results of miscalibration: Non-linearity
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Figure 12: Signal nonlinearity for electrons resulting from miscalibration of a longitu-
dinally segmented calorimeter. The total calorimeter response (average signal per unit of
energy) 1s given for 3 different values of the ratio of the calibration constants for the 2
longitudinal segments, 5/A. See text for details.



Results of miscalibration: Mass dependence
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Figure 14: Signal distributions for +s and various hadrons decaying into all-v final
states. All particles have the same nominal energy and the detector, which has an in-
trinsic resolution of 0.5% for em showers of this energy. was calibrated with electrons
using B/ A = 0.8, See text for details.



Calibration by Minimizing Total Width

e Effects of such calibration methods:

- Calibration constants are energy dependent
- Response non-linearity is introduced

- dystematic mismeasurement of energy
(e.g., 7, e and 7 of same energy give different measurement results)



Problems with this method are NOT limited to
longitudinal segmentation and electromagnetic showers
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Figure 11: The fractional width, =/ F, of the signal distribution for 80 GeV =~ in the
SPACAL detector as a function of the weighting factor apphed to signals from the central
calorimeter tower into which the pion beam was steered. The calorimeter towers were
calibrated with high-energy electrons [7].

From: NIM A485 (2002) 385.



Hadronic showers

® Large fraction of energy is deposited through em showers (1°)

® Starting point of the em component(s) fluctuates wildly



Electromagnetic shower fraction

The electromagnetic fraction of hadron showers
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Signal per layer (a.u.)

10 production is NOT limited to the em section!
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Hadronic showers

® Large fraction of energy is deposited through em showers (1°)

® Starting point of the em component(s) fluctuates wildly

® Non-em shower energy primarily deposited by

- spallation protons
- evaporation neutrons

These particles are also sampled very differently than mip s

® [n addition, the calorimeter response to the em/non-em components
is not the same (e/h + 1, non-compensation)

=) Calibration problems even worse than for em calorimeters



Alternative method: Each section 1ts own particles

A B

e Problem: How about hadrons that start shower in section A?

- Energy systematically mismeasured
depending on e/h values of sections A,B

- Reconstructed energy depends on starting point of shower



Wrong B/A: Response depends on starting point
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FIG. 6.10. Signal distributions for 350 GeV pion showers in a longitudinally segmented
quartz-fiber calorimeter. for events in which different fractions of the (unweighted) shower
energy were recorded in the em calorimeter section. Shown are distributions for which this
fraction was compatible to zero (a), 10-20% (b), or 60-80% (c). The average calorimeter
signal for 350 GeV pions, as a function of this fraction, i1s shown in diagram (d). The ca-
lorimeter was calibrated on the basis of B/4 = 1.51 1n all these cases, as required for
reconstructing the energy of 350 GeV pions that penetrated the em compartment without un-
dergoing a strong interaction. Diagram () also contains results (the crosses) obtained for a
calorimeter calibration on the basis of 5 /A = 1. From [Gan 98].



Preliminary conclusions

e (Calibration 1s a very delicate issue

e Discussed strategies (and several others used 1n practice)
only work for a subset of events

(electrons of certain energy, pions penetrating em section, ...)

e Negative consequences for the rest of the events

- Systematic mismeasurement of energy
- Reconstructed energy depends on starting point shower
- Signal non-linearity, .....

e A more correct method: B/A = 1
1.e. calibrate all calorimeter sections 1n the same way

HOoOWeVer......



CALIBRATION MISERY

Consequences of depth dependence sampling fraction
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So what to do?

» Determine the calibration constants of the longitudinal segments
on the basis of

Monte Carlo simulations!!!



ATLAS: The longitudinally segmented (LAr) ECAL

Towers in Sampling 3
AgpxAn = 0.0245x0.05




ATLAS: Depth dependent em sampling fraction
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ATLAS: Energy reconstruction ECAL
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ATLAS: Electromagnetic signal linearity
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However, this scheme is only valid for electrons!
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Some final thoughts

e Calibration of a longitudinally segmented sampling calorimeter
is a nightmare

® [ don't know how to do it

e More sections —» more problems

How to avoid these problems??
e No longitudinal segmentation (what's the purpose anyway?)

e Use homogeneous calorimeters

e Use sampling calorimeters with Zapns = Z act





