

1

Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future

Ren-Yuan Zhu

California Institute of Technology

Physics with Crystal Calorimeters

 $H \rightarrow \gamma \gamma$ at LHC

Charmonium system observed by CB through Inclusive photons

Calor 2006 at Chicago, Ren-yuan Zhu, Caltech

Mass Produced Crystals

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	PWO(Y)	LSO(Ce)	GSO(Ce)
Density (g/cm³)	3.67	4.51	4.51	4.89	7.13	8.3	7.40	6.71
Melting Point (°C)	651	621	621	1280	1050	1123	2050	1950
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	0.89	1.14	1.38
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.00	2.07	2.23
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.7	20.9	22.2
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	2.20	1.82	1.85
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm)	410	550	420	300	480	425	402	440
(at peak)			310	220		420		
Decay Time ^b (ns)	230	1250	30	630	300	30	40	60
			6	0.9		6		
Light Yield ^{b,c} (%)	100	165	3.6	36	21	0.29	83	30
			1.1	3.4		.083		
d(LY)/dT ^b (%/ ºC)	~0	0.3	-0.6	-2	-1.6	-1.9	~0	-0.1
				~0				
Experiment	Crystal Ball	CLEO BaBar BELLE BES III	KTeV	TAPS (L*) (GEM)	L3 BELLE PANDA?	CMS ALICE PrimEx PANDA?	-	-

a. at peak of emission; b. up/low row: slow/fast component; c. PMT QE taken out.

Scintillation Light Decay Time

Recorded with an Agilent 6052A digital scope

Fast Scintillators

Slow Scintillators

Measured with a Philips XP2254B PMT (multi-alkali cathode) p.e./MeV: LSO/LYSO is 6 & 230 times of BGO & PWO respectively

Slow Scintillators

Calor 2006 at Chicago, Ren-yuan Zhu, Caltech

Emission Weighted PMT Q.E.

Taking out QE, L.O. of LSO/LYSO is 4/200 times BGO/PWO Hamamatsu S8664-55 APD has QE 75% for LSO/LYSO

2.5 x 2.5 x 20 cm (18 X₀)

LSO/LYSO with PMT Readout

~10% FWHM resolution for ²²Na source (0.51 MeV) 1,200 p.e./MeV, 5/230 times of BGO/PWO

LSO/LYSO with APD Readout

L.O.: 1,500 p.e./MeV, 4/200 times of BGO/PWO Readout Noise: <40 keV

Calor 2006 at Chicago, Ren-yuan Zhu, Caltech

Crystal Calorimeters in HEP

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-20
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	Nal(Tl)	BGO	CsI(TI)	CsI(TI)	Csl	CsI(TI)	CsI(Tl)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X_0)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	WS ^a +Si PD	PMT	Si PD	Si PD	APD^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	0.8	0.5	0.2	small	0.15	0.2	40
Dynamic Range	104	10 ⁵	104	104	104	104	104	10 ⁵

Future crystal calorimeters in HEP: PANDA at GSI: PWO or BGO? LSO/LYSO for a Super B Factory or ILC?

L3 BGO Resolution

Calor 2006 at Chicago, Ren-yuan Zhu, Caltech

L3 BGO degrades 6 - 7% in 7 years

BaBar CsI(TI): 1 - 3 % per year

- Induced absorption caused by color center formation:
 - reduced light attenuation length and thus light output, and maybe
 - degraded of light response uniformity (LRU).
- Induced phosphorescence:
 - increase readout noise.
- Reduced scintillation light yield:
 - reduce light output and degrade light response uniformity.

Item	CsI(TI)	Csl	BaF_2	BGO	PbWO ₄
Color Centers	Yes	Yes	Yes	Yes	Yes
Fluorescence	Yes	Yes	Yes	Yes	Yes
Scintillation	No	No	No	No	No
Recover @RT	Slow	Slow	No	Yes	Yes
Dose Rate Dependence	No	No	No	Yes	Yes
Thermall Annealing	No/Yes	No/Yes	Yes	Yes	Yes
Optical Bleaching	No/Yes	No/Yes	Yes	Yes	Yes

Radiation Induced Absorption

Measured with Hitachi U-3210 Photospectrometer

Dose Rate Dependence

IEEE Trans. Nucl. Sci., Vol. 44 (1997) 468-476

$$dD = \sum_{i=1}^{n} \{-a_i D_i dt + (D_i^{all} - D_i) b_i R dt\}$$

$$D = \sum_{i=1}^{n} \{ \frac{b_i R D_i^{all}}{a_i + b_i R} \left[1 - e^{-(a_i + b_i R)t} \right] + D_i^0 e^{-(a_i + b_i R)t} \}$$

- D_i : color center density in units of m⁻¹;
- D_i^0 : initial color center density;

n

- D_i^{all} is the total density of trap related to the color center in the crystal;
- a_i : recovery costant in units of hr⁻¹;
- b_i : damage contant in units of kRad⁻¹;
- R: the radiation dose rate in units of kRad/hr.

$$D_{eq} = \sum_{i=1}^{n} \frac{b_i R D_i^{all}}{a_i + b_i R}$$

No/slow recovery: no/less dose rate dependence

Calor 2006 at Chicago, Ren-yuan Zhu, Caltech

Calor 2006 at Chicago, Ren-yuan Zhu, Caltech

TEM/EDS Study on PWO Crystals

TOPCON-002B scope, 200 kV, 10 uA, 5 to10 nm black spots identified JEOL JEM-2010 scope and Link ISIS EDS localized Stoichiometry Analysis

X-ray	Good PWC
Bad PWO	Bad PWO

Atomic Fraction (%) in PbWO₄

As Grown Sample

Element	Black Spot	Peripheral	$Matrix_1$	Matrix ₂
0	1.5	15.8	60.8	63.2
W	50.8	44.3	19.6	18.4
Pb	47.7	39.9	19.6	18.4

The Same Sample after Oxygen Compensation

Element	Point ₁	$Point_2$	Point ₃	Point ₄
0	59.0	66.4	57.4	66.7
W	21.0	16.5	21.3	16.8
Pb	20.0	17.1	21.3	16.5

Oxygen Vacancies Identified

BGO/PWO Quality Improvement

Nucl. Instr. and Meth. A302 (1991) 69

Nucl. Instr. and Meth. A480 (2002) 470

BGO damage recovery after 2.5 krad

PWO damage at different dose rate

LYSO Radiation Damage

LT @ 430 nm: 3% increase @ 2 rad/h (19h), 5% degradation @ 9 krad/h (22h) Radiation induced phosphorescence: 0.2 & 1 MeV noise @ 15 & 500 rad/h IEEE Trans. Nucl. Sci. **52** (2005) 3133

Calor 2006 at Chicago, Ren-yuan Zhu, Caltech

- Less demanding to the environment because of small temperature coefficient.
- Radiation damage is less an issue as compared to other crystals.
- A better energy resolution, σ(E)/E, at low energies than L3 BGO and CMS PWO because of its high light output and low readout noise:

2.0 % /
$$\sqrt{E} \oplus 0.5$$
 % \oplus .001/E

- Because of total absorption, precision crystal calorimetry provides the best possible energy and position resolutions for electrons and photons as well as good e/γ identification and reconstruction efficiencies.
- Progress has been made in understanding crystal radiation damage and improving qualities of mass produced crystals.
- An LSO/LYSO crystal calorimeter will provide excellent energy resolution over a large dynamic range down to MeV level for future HEP and NP experiments.

LAL affects LRU

Nucl. Instr. And Meth. A413 (1998) 297

Ray-Tracing simulation for CMS PWO crystals shows no change in LRU if LAL is longer than 3.5 crystal length

Light collection efficiency, fit to a linear function of distance to the small end of the crystal, was determined with two parameters: the light collection efficiency at the middle of the crystal and the uniformity.

LAL (cm)	20	40	60	80	200			
Large Area Photo Detector, covering 100% back face								
η_m (%)	9.5±.2	15.7±.4	$19.2 {\pm}.5$	21.6±.6	$26.9 \pm .7$			
δ (%)	23 ±1	-4.6±.8	-11±1	-15±1	-15±1			
ϕ 5 mm Photo Detector, covering 3.7% back face								
η_m (%)	.38±.04	.74±. 0 8	$1.1 \pm .1$	$1.4 {\pm}.2$	$3.0 {\pm}.3$			
δ (%)	23±4	-3.5 ± 4	-12±4	-16±4	-17±3			
$rac{\eta_m(\phi 5 m m)}{\eta_m(Full)}$ (%)	4.0	4.7	5.7	6.5	11			

PWO Radiation Damage

No damage in scintillation mechanism No damage in resolution if light attenuation length > 1 m

