

OVERVIEW

<u>October-November 2004</u>: TEST BEAM → 1st supermodule (SM10) fully equipped with final electronics

<u>ECAL</u> = Barrel: 36 supermodule (1700 crystals) End caps: 4 dees (3662) R. Paramatti's talk

<u>Test Beam objectives:</u> verify the performance of the ECAL

- \rightarrow Reconstruction of the signal amplitude
- \rightarrow Noise
- \rightarrow Energy resolution
- \rightarrow Position dependence of the response
- → checking laser monitoring system see A. Bornheim's talk
- → intercalibration procedure see G. Daskalakis' talk w/ cosmics see G. Franzoni's talk.

OUTLINE

- The 2004 Test Beam set-up:
 - \rightarrow Description of the Test Beam experimental set-up
 - → ECAL readout electronics

Reconstruction of the signal amplitude:

- \rightarrow Weights method: principle and performance
- \rightarrow Implementation for CMS and Test Beam analyses

Noise measurements

 \rightarrow Noise level in 1 channel and crystal arrays

Intrinsic resolution:

 \rightarrow Resolution for central impact at 120 GeV

- \rightarrow Resolution as a function of energy
- Position dependence of the reconstructed energy
 - → Correction Method: Cluster containment corrections
 - \rightarrow Performance on Test Beam data

TEST BEAM EXPERIMENTAL SET-UP

Electron beam 20 to 250 GeV range (H4 secondary Line)

READ OUT ELECTRONICS

⇒ After pre-amplification, the signal is sampled every 25 ns by the ADCs
 ⇒ samples → reconstruct the signal amplitude
 ⇒ proportional to the energy deposited by the particle in the crystal

RECONSTRUCTION OF SIGNAL AMPLITUDE

Different implementations:

- "5-weights" on the peak: measure the Amplitude A after subtracting average pedestal
- ◆ "3+5 weights": measure A, using the pre-samples in the reconstruction
 → this method subtracts the pedestal P event/event

RECONSTRUCTION OF SIGNAL AMPLITUDE

Noise measurements from data with no beam

<u>Method</u>	<u>1x1 (MeV)</u>	<u>3x3 (MeV)</u>	<u>5x5 (MeV)</u>	
1 sample	44±0.4	137±2	241±3	Small correlated noise between channels
5-weights	41±0.7	141±4	248±4	
8-weights	40±0.7	118±3	200 ±4	

Noise characterization:

- ◆ Correlation within 1 channel: sample close in time
 → use of the samples in the peak is less important
- Low frequency noise ~ 0.3
 → Use of pre-samples in the reconstruction method
 → determine P event/event

Signal amplitude reconstruction \Rightarrow 3+5 pedestal subtracting weights \rightarrow removes efficiently all correlated noise between channels

3/06/06 CALOR 06

NOISE MEASUREMENTS

3/06/06 CALOR 06

Alexandre Zabi - Imperial College

IMPLEMENTING RECONSTRUCTION METHOD

\Rightarrow TEST BEAM \neq CMS

- \rightarrow CMS: electrons arrive in coincidence w/ the clock \rightarrow PHASE FIXED
- \rightarrow TEST BEAM: electrons arrive randomly \rightarrow RANDOM PHASE (0 \rightarrow 25ns)
 - \rightarrow 1 set of weights for each bin in phase

Weights calculated from a signal representation f(t): 2 parameters **Tmax** (signal timing) and **C** (width)

⇒ <u>CMS</u>: synchronous mode → <u>1 set of weights</u> can be used for the whole ECAL ⇒ <u>Test Beam</u>: more sensitive to individual channel pulse shape → 1 set of weights/channel is needed

ECAL RESOLUTION vs ENERGY: central impact

⇒ RESOLUTION vs Energy for XTAL 704 3x3
 ⇒ Intercalibration constants from beam data (120 GeV)

3/06/06 CALOR 06

Alexandre Zabi - Imperial College

11

POSITION DEPENDENCE OF THE RESPONSE

Containment effect decreases with the matrix size

 \Rightarrow Energy contained in an array of crystals depends on the position the shower

Example: 3x3 matrix

3/06/06 CALOR 06

Alexandre Zabi - Imperial College

ECAL ENERGY RESOLUTION: uniform impact

 \Rightarrow Study of containment corrections performance: Energy resolution 3x3

- \rightarrow 30k events runs @ 120 GeV
- \rightarrow Beam directed in many positions \rightarrow combining data sets

\Rightarrow Good performance of the containment corrections: \rightarrow 0.50% energy resolution at 120 GeV

CONCLUSIONS

Test beam studies:

- Determine a signal amplitude reconstruction giving best performance
 - \rightarrow implementation for Test Beam asynchronous
 - → conclusion for CMS (<u>1 set of weights</u>)
- Corrections for containment effect

ECAL performance:

- \Rightarrow Noise in 1 channel ~ 40 MeV
 - \rightarrow reconstruction method eliminates coherent noise
- \Rightarrow Energy Resolution: 3x3 matrix

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{2.9\%}{\sqrt{E}}\right)^2 + \left(\frac{125(MeV)}{E}\right)^2 + (0.30\%)^2$$

⇒ Excellent performance of the ECAL

3/06/06 CALOR 06

TIMING MEASUREMENT

⇒ Filtering technique: determine an additional set of weights to measure the signal timing.

 $\begin{array}{l} \underline{\textit{Excellent time resolution}}: \rightarrow \mathsf{E} > 2 \; \mathsf{GeV} \rightarrow \sigma(\delta t) < 1 \; \mathsf{ns} \\ \rightarrow \mathsf{E} > 40 \; \mathsf{GeV} \rightarrow \sigma(\delta t) \sim 0.11 \mathsf{ns} \end{array}$

- ♦ Check signal timing: must remain stable → variation of the response with time → important for CMS running
- Time of flight of high energy particles

AMPLITUDE RECONTRUCTION: TEST BEAM

- \Rightarrow Asynchronous case: TDC (phase) is random between 0 and 25 ns.
 - \rightarrow we consider 25 bins of 1ns
- ⇒ In order to use the weights method in the asynchronous case we need to determine a set of weights for each TDC bins:

 \Rightarrow <u>Asynchronous case</u> \rightarrow severe constraint on amplitude reconstruction: The weights method must reconstruct to the <u>same amplitude in all TDC bins</u>

3/06/06 CALOR 06

AMPLITUDE RECONTRUCTION: effect of the shape

3/06/06 CALOR 06

Alexandre Zabi - Imperial College

Energy (GeV)

21

AMPLITUDE RECONTRUCTION: bias

ECAL INTRINSIC RESOLUTION vs ENERGY

Central impact: 18 3x3 matrices

