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@ From “digits” to “raw” energy: the electronics calibration of
the LAr electromagnetic calorimeter

@ Description of electrons in the detector: data vs. Monte-
Carlo comparison

a Combined studies with the electromagnetic calorimetry
v Converted photon reconstruction (tracker+EMQC)
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\\ Other related presentations at @
r d CALOR 2006

@ General description of the ATLAS LAr electromagnetic
calorimeter:

v Martin Aleksa: “The ATLAS Liquid Argon Calorimeter:
Construction, Integration, Commissioning”

a Uniformity of the response to electrons:

v Irena Nikolic: “Recent Results on the Uniformity of the
Liquid Argon Calorimeter Measured in Test Beams”

@ Linearity of the response to electrons:

v Walter Lampl: “Studies of the Linearity of the ATLAS
Electromagnetic Calorimeter Response”

& Response to pions:

v Vincent Giangiobbe: “Studies of the response of the ATLAS
barrel calorimeters to pions using 2004 combined test
beam data”
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LAr Barrel module
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LAr electronics calibration:

From digits to “raw” energy
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j=1 1=1 k The ionization signal is sampled every 25 ns by a
12 bits ADC in 3 gains. 6 samples are recorded at

Energy Raw Samples the CTB for redundancy (5 at ATLAS). Energy is
reconstructed offline (online in ROD at ATLAS).
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LAr electronics calibration:

% LAr electronic calibration runs

o

pedestals and noise ADC — MeV conversion response to current pulse

FEB are read with no

input signal to obtain:
@ Pedestal
@ Noise
@ Noise autocorrelation
(OFC computation)
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F = ADC2DACx DAC2uA
x WA2MeV

X fsamp

@ Scan input current (DAC)

@ Fit DAC vs ADC curve with
a second order polynomial,
outside of saturation region
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LAr electronics calibration:

Pedestals and noise

—— NG

T e || @ Pedestal and noise levels are
measured regularly (every 8 hours)

@ Measured with two approaches:

v' Dedicated “pedestal” runs (the FEBs are read
without calibration signal or beam)

v Random triggers during standard physics

o
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LAr electronics calibration:
¥ ADC — MeV conversion (1)

& Other (global) conversion factors:

v DAC2pA: from calibration boards and
injection resistance data

v nA2MeV: computed from detailed simulation
of charge collection in accordion gaps

v fsamp: COMputed from simulation

o

Electronic gain of each channel is
measured regularly (every 8 hours)

@ The DAC versus ADC curve is fitted
with a second order polynomial

v DAC = F,+ F, - ADC + F, - ADC?2
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LAr electronics calibration:
ADC — MeV conversion (2)
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LAr electronics calibration:

\¥/  Optimal Filtering Coefficients

©

i
@ The use of OF reconstruction allows to ::;1'2; lonization signal
v" Minimize noise contributions (at g 1 prediction
CTB only electronic noise, at ATLAS 2 ,F _
would include piIe—up) E L i At the test-beams particles are
o N 06 ¢ asynchronous w.r.t. the DAQ
v' Minimize jitter-related effects - clock: more than one OFC set,
e OFC computation implies the 0.4 S chosen ac_cord_ing to an external
knowledge of: 0-2:_ 5 time information (TDC)
v' noise autocorrelation: oz_i
e computed from pedestal data C
v normalized ionization pulse: 0.2
e predicted from the corresponding T T T T T T T T —— T
calibration profiles according to the t (ns)
electrical model of the readout cell _ _
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LAr electronics calibration:

Cross-talk effects

o

@ The EMC cells share part of their

collected current because of cross-talk

v In general the effect is negligible, and
compensated by the clustering
algorithm

@ The effect is non negligible for the

first sampling

v' The actual electronic gain is
overestimated (~9%)

v The pulse shapes obtained injecting the
calibration current are “wrong” w.r.t.
the one generated by a particle shower
(cluster)

e If these shapes are directly used to compute
OFC, the use of these “wrong” OFC lead to a

underestimation of the ADC peak (~1-3%)
Pulse Pattern v The combined effects lead to a global

overestimation of the first sampling

cluster energy of ~7%
Response Pattern |

We have an effective recipe to treat the

Marco Delmastro

effect (gain correction + proper OFC)
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K Description of electrons in the detector:
% Data vs. Monte-Carlo (E < 9 GeV)

@ A good description of the energy deposits in the EMC is crucial to
obtain the proper energy scale calibration

v see W. Lampl talk in this session for details...
@ Two simulation for two different beam-line setups
v “Very Low Energy” (1-9 GeV)

¢ momentum selection is done very close to the CTB trigger

v E > 9GeV (9 GeV -180 GeV)

o

- A
¢ VR

VLE: very good description of energy deposits in each EMC layers

1 E = 9 GeV
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Similar good agreement results down to E = 2 GeV
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3
-

‘g data vs. Monte-Carlo (E > 9 GeV)

1*_}{%1’0

Description of electrons in the detector:

o

E > 9 GeV: very good description of energy deposits in each EMC layers

w @ Dala PS : = Similar good
MC 200/
0l + i agreement results
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Performances of the electromagnetic calorimetry at the CTB:

Converted photon reconstruction m
@ CTB photon run setup

180 GeV e* Y converted
MBPSID
>§ i
[+ 1 I T 31" — )
— = IXJ/ AL
B, B, Pixel sCT e* e pair
vy emitted (6 mm Pb target) TRT
@ Topological clustering is ¢ o3
used to reconstruct 3 0o & (E=130 GeV) )
objects in EMC: o "
v main e* oL 10
v e*te” pair from converted vy %
. . 0.1 /
o Next step: combine with e'e pair 10
tracker, compute E/p U35 04 o045 05 055 06 065
n
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\ Performances of the electromagnetic calorimetry at the CTB:

Converted photon reconstruction

o

. i i - All conversions
@ Backtracking of e*e- pair nicely “El. . _
indicates the pixels and SCT sofz % = 3 clusters in
layers as conversion points aof 2 Magnetic
@ A good association between j field
clusters in EMC and conversion
positions is found vl
@ First measurement of E/p is
obtained, agreement between Radius (mm)
data and MC is good!
[ x position of firsthit_} MC MC
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\ut/ Conclusions CA@
u The 2004 ATLAS CTB was an unprecedented occasion to

exercise the electronics calibration of the LAr electromagnetic
calorimeter

v' The full electronic calibration chain was implemented

v' Performances of the ATLAS LAr final electronics were studied,
requirements

v All the EMC electronics calibration procedures have been
implemented in the ATLAS reconstruction software, system is ready
for full EMC commissioning (summer 2006) and ATLAS data taking

@ The response of the detector to electrons is very well
understood

v Very good agreement between data and Monte-Carlo in the
different beam-line setups

v' Simulation can be used to compute calibration weights (see other
talks in this session)

@ Combined studies are ongoing, first results are very encouraging
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Additional slides
for curious kids
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N Optimal filtering coefficients (1)

:w_-:'.*- ;'ég{

e

f(t)= Ag(t=7)+n(t)= A{g(t)-rg/(t)} +n(t)| -

S =A(g 79 )+n,

Choose coefficients for the expressions: \ <nk> =0
u-Yas  V-3hs n

such to minimize 0, and 0,, with the constraints:

N

noise
N N autocorrelation
<U>:A = Zakgkzl ) ZakgI::O function
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Optimal filtering coefficients (2) I@:Aq

Solve with Lagrange multipliers:

/ Peak equations: \ / Time equations: \

= { Zj 28Ry ~ A2, 2,8~ 42, aigi’} = a?)k {;—Zj bb;Ry = p3 big =~ o X bigi’}
_ZaiR”‘_(;tgk+ﬂgk) zzbiRik_(pgk+O-gI:)
:ai=/12k Ri_klgkﬂlzkl R0k :bi=ﬂZk Rﬁ(lgk-i—O'Zk: R.'9y
/1:% lezgiijj_l Q3:Zgig;Rj_l ,0=%
1) ij

& u=-2 Q-YugR'  8-0Q-Q o=-9 /
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LAr e

lectronic calibration
strategy (1)

A known exponential
current pulse is injected
at the MB level...

\/7

cal
L ME + SE

... and reconstructed through local
the full readout chain. The constant
actual gain of each readout term

channel is computed. < 0.5%

(ANEAD =
\/ 0.2£0.4)

electrode

ohy

-

2
Z|
9

(] line F——
| Rmé CR-RC* Vi

The shaper output of the
jonisation and calibration
signal is different!

@ Injected signal shape

=

The triangular
ionisation signal is
generated at the
LAr gap level.
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LAr electronic
calibration strategy (2)

triangular ionization signal: L
t st
1 1 . e_STd current step R

generator

Iphys(s) — Iophys

82Td
i . . . calibration line
“exponential” calibration signal : r éa mother
( [ t gR L
Ica“(t) — Ica“ (1 - fstep) e Tcali 4 fstep] v
< i .
cali — cali | (1—fstep)Tcaii fstep fstep = TE
\ 7)) = IO 1+sTcali + s \ "+
Tcali — _LR
\ Ttz
calibration signal: -
mjj\__ ME + B
1 —( T Tine ) :
|Ca||(8) Icall(s) sC' + sL Rm§ CR-RC*——V,,,
ine — 4in
) 1 c T 8L+ Zjine s L
L . N readout
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hve hvs L T transfer function:
ID \% (8) — Ip Yy ——

ne n ( )
| J 1 +8L+Z"”e Vout = Ijine X H(s)
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LAr electronic
> o calibration strategy (3)

In order to complete the cell equalization, the readout
gain computed with the calibration signal...

[

]

... is to applied to an ionisation signal
that has been corrected!

Injection point correction:

LC

LN

p

max{gali(t)} =1

\

The triangular ionisation pulse
generated at the LAr gap level
is “normalized” when it
corresponds to a unitary
calibration pulse injected at
the MB level...

h _ cali (1+s7can)(sTy—1+e *'d) L
gP"2(s) = g=(s) X ( STCda(“fstep(fl'STcali) ) . (

\ﬁ

N

1+82LC>

Injected signal shape difference

correction: T, T, 7
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LAr electronics calibration:

¥ OFC Time Tuning at CTB

¥

o

et FEB timing (when the signal is sampled)
e tyepa: Global trigger timing changes

@ At 2004 CTB particles are asynchronous w.r.t. the DAQ 3 L P,
clock... § ‘cubic fit tlme
v More than one OFC set is needed! £ o8
e corresponding to different portions of the pulse Dsi
v The good OFC set is chosen according to an external C ﬁ;
time information (TDC) providing ¢ pasc 04— ™
Fun 1000993 EMBZ2: cubic time vs fragﬂxmenanul zﬂ::m:: [Run 1000883 EMB2: cubic Time vs phase| :x?;.»:h;: 0.2 :_
-1°°, Mesnx sss& a‘"": ::v mz‘:;z r . .
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e The global trigger setup changed frequently (~10 times!) 4°°°°:_
v' itis has been necessary to implement a “timing offsets” :
mechanism to choose the proper OFC set in each period... 30090
v Coffset = Pphase T Creg + tglobal 20000:
v Offsets (teeg, tg00a) have been computed using an o <At>=0
iterative procedure exploiting the timing information -
provided by the OFC reconstruction 10000 — o=1.5ns
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K“‘ LAr electronics calibration: @
&‘:.:_ W | | = A
Pedestals temperature variation
S
| Ref - Ped vs Date (FT D, Slot 3} FRONT 1 | ::‘g
] SEEaaz | /ﬁﬂ 7 7es+w<mme | @ IN general a very good stability of
AN 7/ BN i pedestals was observed...
£an @ ... but the temperature dependence
1§ may become important in case of
i cooling problems
zg_ v' FEC cooling was not the ATLAS final system,
2 such an important correction is not expected
T at ATLAS
4 . :
55 L0 L & The effect is small, but since we are
1607 3007 oSl 19 . L.
Date looking for precision, we uses
[ Ref- Ped vs Date {FT 1, Siot3) FRONT1_| i pedestals from random trigger varying
;B | | iy during a run
]
I

[ estal Variatlon FT 0 Slot 01 ] = 5 Pedestal Varlation FT 0 Siot 02 i
T
3, [}

RN Difference w.r.t. reference Average value as
ze wn wi pedestal run as a function  saved in conditions
of the event (< 3 ADC) database
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LAr electronics calibration:

L Cross talk correction @=
g 2500: «  Standard pulse n Prescrlptlon
2 s000f A\ S talk correctad I
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500 & 7
”—j @ Electronic gain correction
B R T R T TR T R TR v R‘—_:]tion betwe_en delay pulse p_ea_ks
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g M @ OFC correction
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:i; g ﬂ. s+ X-mlk pulse neighbour -2 pUIseS to predICt phySICS pLIIseSI
E‘ 100:_ ..' ..:::. X-lk pulse neighbour +2 from WhICh CompLIte OFC
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o

H8 beam line

-100m
NA45

Trig
I:I =Quads

.......... Jvay TN d—
Target = ‘ H H H I] 12£0.03X, [ . r:-

B1B2B2B1B1B2 \ || Y.

A A
C9

Momentum selection Focusing

-310 m -140 m -27 m

Trigger acceptance depends on energy loss and angular distribution of electrons.
Acceptance functions have been produced and will be tested with data in
combined runs. Inner Detector an important player here.
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H8 G4 simulation setup

Tile hadronic

| 8 3 {quld Argon harmﬁll:taltt::rr;e[tar &
Transition gjectromagnetic '
Radiation .3 5rimeter
Tracker
Magnet

Marco Delmastro CALOR 2006 - Recent results of the ATLAS combined test-beam 26



\w/ EMC G4 simulation details ©
P

Data factors:

PS Correction = 1235/1149 —S%—— | (ADC2MeV G4v4.8) / (ADC2MeV G4v4.7) |
Strip X-talk
Correction = 0.91 Measured RRRYRLION
0856 : B0 200 250 300 30 &

MC factors: o e " strps
EM global scale = 0.975 —Matched I Tuned on high energy run I

_ | Losses at ¢=0 due to non-modelling of the
PS scale = 0.946 " | PS module crack.
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\3p’ Back-tracking data quality @
c.r- Initial track parameters are obtained from the input TRT track
@ Field integral information is used to make a momentum estimate

& Actual tracking is obtained using the xKalman technique

-
e ¥

[ Reconstructed track p h7 [ x position of first hit | h10
Entries 2328 Entries 2367
180 Mean 24.58 so0lE Mean 338.4
E + RMS 16.08 E RMS 123.9
+ 500
400 t
300
200 p 1
o t
100~ h H n J
a""""""""""'H"""
0 100 200 300 400 500

600
Track initial hit position

Number of Si hits h2 Track phi direction . h23
Entries 2328 Entries 2328

Mean 7.668 F Mean  -0.004371
RMS 3.138 5 RMS  0.02384
£ 200
350 C
= 180
300 - 160 f—
250 - 140 =
F 120
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= 100~
150 |- 80F-
100 - S0
E a0
SoF 20
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