Intellig Dette Design

Norman Graf, Steve Magill, Steve Kuhlmann, Ron Cassell, Tony Johnson, Jeremy McCormick SLAC & ANL CALOR '06 June 9, 2006

Individual Particle Reconstruction

- The aim is to reconstruct individual particles in the detector with high efficiency and purity.
- Recognizing individual showers in the calorimeter is the key to achieving high di-jet mass resolution.
- High segmentation favored over compensation.
- Loss of intrinsic calorimeter energy resolution is more than offset by the gain in measuring charged particle momenta.
- Use this approach to design complete detector with best overall performance/price.

Absorber Requirements

-> Need a dense calorimeter with optimal separation between the starting depth of EM and Hadronic showers. If λ_l/X_0 is large, then the *longitudinal separation* between starting points of EM and Hadronic showers is large

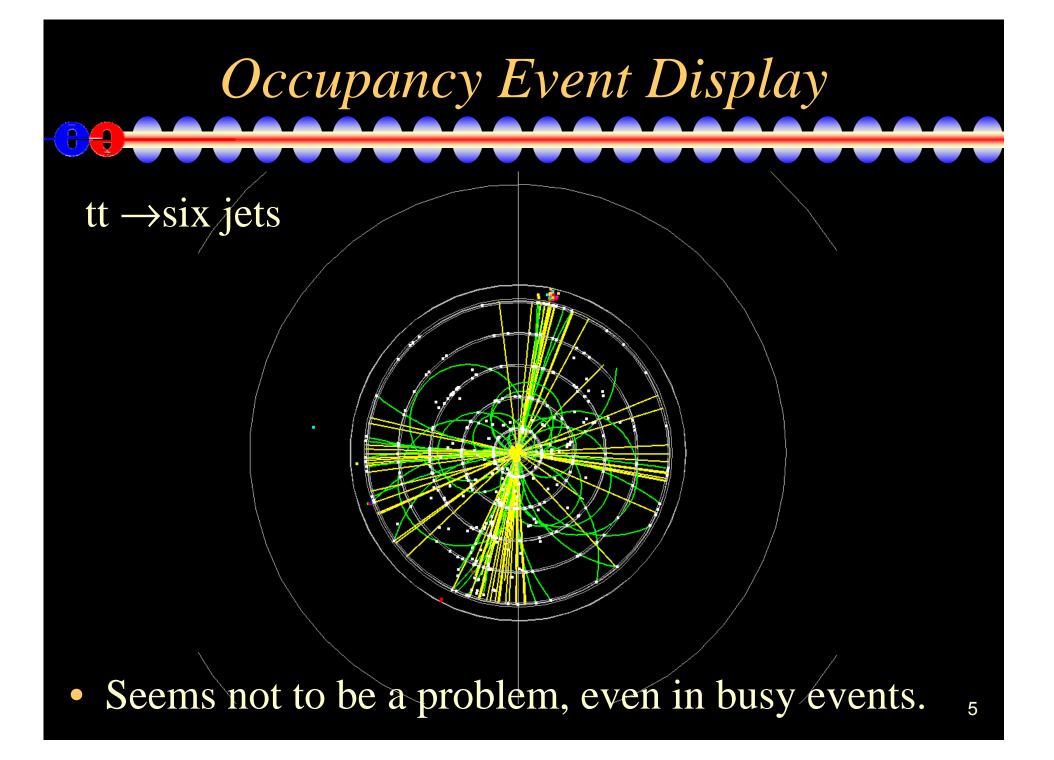
-> For electromagnetic showers in a dense calorimeter, the transverse size is small

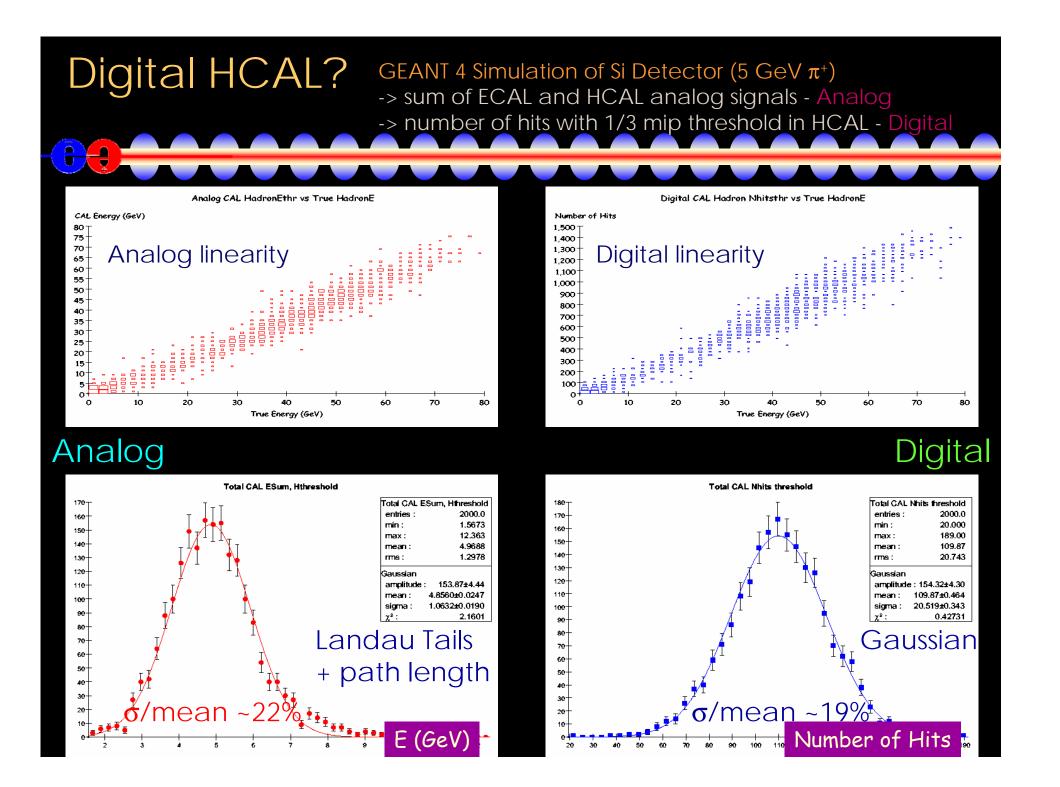
-> small r_M (Moliere radius)

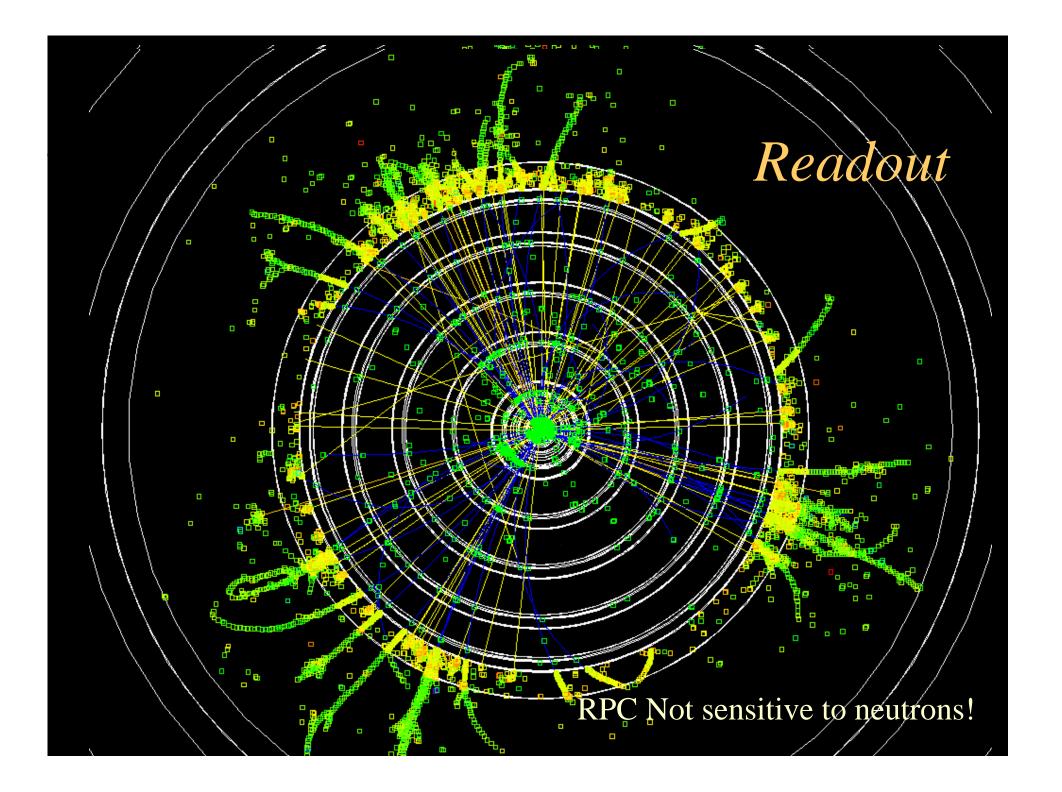
-> If the transverse segmentation is of size r_M or smaller, get optimal *transverse separation* of electromagnetic clusters.

Dense, Non-magnetic

0.00		
	IJANCA	Night magnetic
		Non-magnetic


eensernenmagnette				
Material	λ _I (cm)	X ₀ (cm)	$\lambda_{\rm I}/{\rm X}_{\rm 0}$	
W	9.59	0.35	27.40	
Au	9.74	0.34	28.65	
Pt	8.84	0.305	28.98	
Pb	17.09	0.56	30.52	
U	10.50	0.32	32.81	


		X_0 (cm)	
Fe (SS)	16.76	1.76	9.52
Cu	15.06	1.43	10.53


... use these for ECAL

Calorimeter Segmentation

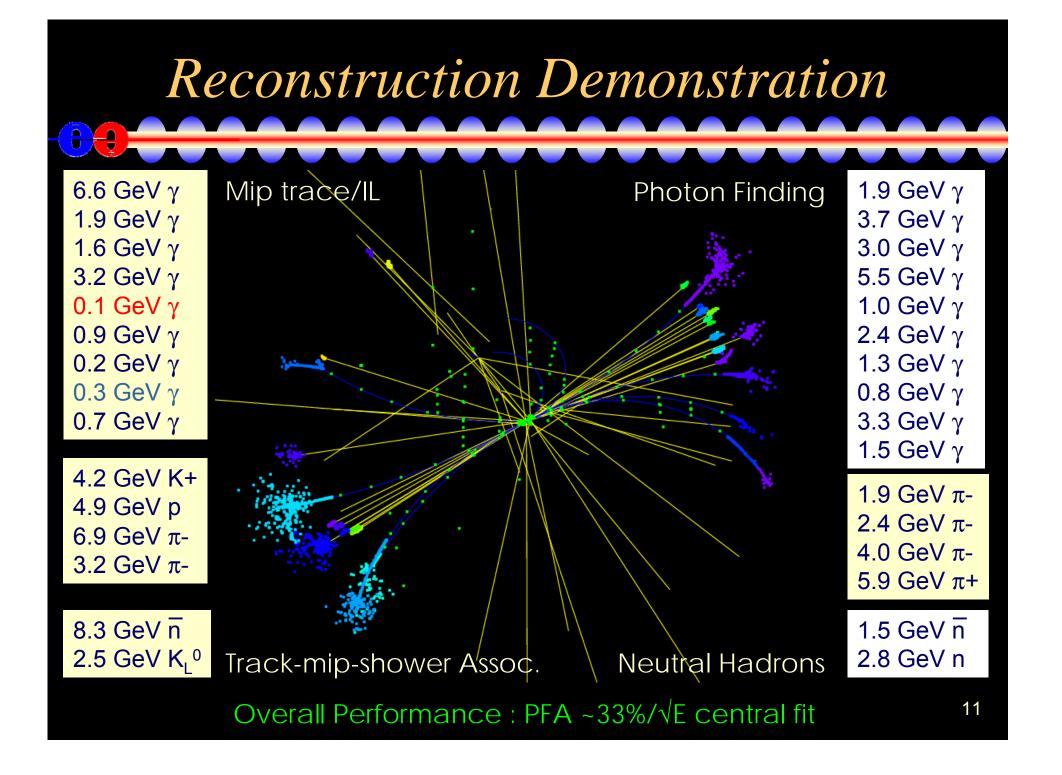
- Highly segmented calorimeters constructed of materials which induce compact shower size are necessary.
- Si-W default for electromagnetic calorimeter.
- Tungsten also being investigated for HCal
 more compact design reduces cost of coil
- Need high segmentation to minimize the number of cells receiving energy deposits from more than one initial particle.

Detector models				
 Calorimeters drive the whole detector design! 				
• Using Si-W as default electromagnetic calorimeter.				
 Investigating several hadronic calorimeter designs 				
Absorbers	Readouts			
Steel	RPC			
Tungsten	Scintillator			
Lead	GEM			

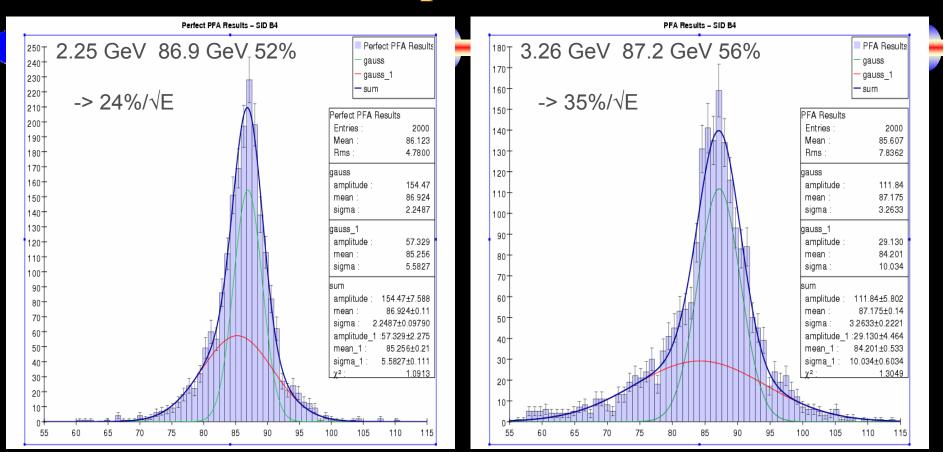
• Varying inner radius of barrel, aspect ratio to endcap, strength of B Field, readout segmentation.

Reconstruction Strategy

• Track-linked mip segments (ANL)

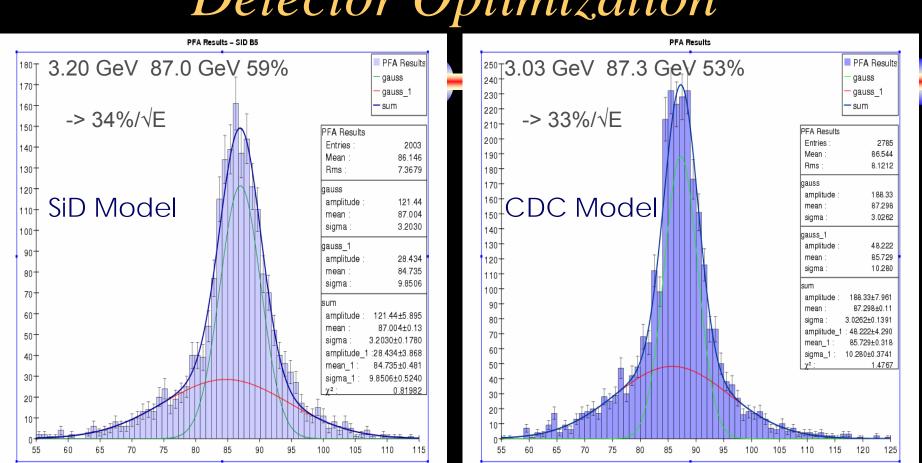

- find mip hits on extrapolated tracks, determine layer of first interaction based solely on cell density (no clustering of hits) ($\rightarrow \mu$ candidates)

• Photon Finder (SLAC)


- use analytic longitudinal H-matrix fit to layer E profile with ECAL clusters as input ($\rightarrow \gamma, \pi^0, e^{+/-}$ candidates)
- Track-linked EM and HAD clusters (ANL, SLAC)
 - substitute for Cal objects (mips + ECAL shower clusters + HCAL shower clusters), reconstruct linked mip segments + clusters iterated in E/p
 - Analog or digital techniques in HCAL ($\rightarrow \pi^{+/-}$ candidates)
- Neutral Finder algorithm (SLAC, ANL)
 - cluster remaining CAL cells, merge, cut fragments (\rightarrow n, K⁰_L candidates)
- Jet algorithm
 - Reconstructed Particles used as input to jet algorithm, further analysis

Z Pole Analysis

- Generate $Z \rightarrow qq$ events at 91GeV.
- Simple events, easy to analyze.
- Can compare analysis results with SLC/LEP.
- Can easily sum up event energy in ZPole events.
 Width of resulting distribution is direct measure of resolution, since events generated at 91GeV.
- Run jet-finder on Reconstructed Particle four vectors, calculate dijet invariant mass.


Detector Comparisons, B Field

SiD SS/RPC - 5 T field Perfect PFA σ = 2.6 GeV $PFA \sigma = 3.2 \text{ GeV}$

SiD SS/RPC - 4 T field Perfect PFA σ = 2.3 GeV $PFA \sigma = 3.3 \text{ GeV}$ Average confusion = 1.9 GeV Average confusion = 2.4 GeV

 \rightarrow Better performance in larger B-field

Detector Optimization

SiD -> CDC 150

ECAL IR increased from 125 cm to 150 cm 6 layers of Si Strip tracking HCAL reduced by 22 cm (SS/RPC -> W/Scintillator) Magnet IR only 1 inch bigger! Improved PFA performance w/o increasing magnet bore

Reconstruction Framework H

• Analysis shown here done within the general ALCPG simulation & reconstruction environment.

Ī

- Framework exists for the full reconstruction chain which allows modular implementation of most aspects of the analysis.
- Interfaces allow different clustering algorithms to be swapped in and alternate strategies to be studied.
- Goals is to facilitate cooperative development and reduce time & effort between having an idea and seeing the results.

Testing Samples

- Testing reconstruction on simple events. Study finding efficiency, fake rates and measurement resolutions (E, p, mass) using:
- Single Fundamental Particles

$$-e^{+/-}$$
, γ , $\pi^{+/-}$, $\mu^{+/-}$

<u>a</u>

H

• Simple Composite Single Particles $\pi^0 K^0 \circ \Sigma \tau$

 $-\pi^0$, K⁰, ρ , Σ , τ , ψ

- Complex Composite Single particles – Z, W
- Physics Events

• WWv \bar{v} and ZZv \bar{v} at 500 and 1000 GeV cms

- Stresses jet mass resolution.

 $-VVv\overline{v}$ removes temptation to include beam constraint.

Canonical Samples (Physics)

• tī, tīh at 500GeV

- Stresses pattern recognition and flavor tagging in busy environment.
- Zh at 500GeV
 - Recoil mass tests tracking resolution.
 - Branching ratios stress flavor tagging eff./purity.
- $\tau^+\tau^-$ exercises τ ID and τ polarization (SUSY, P_{higgs})

Summary

• Individual Particle Reconstruction algorithms being developed with minimal coupling to specific detector designs.

• Photon and muon reconstruction fairly mature.

<u>a</u>

- Emphasis on track-following for charged hadrons.
- Canonical data samples identified and will be used to characterize detector response.
- Systematic investigation of σ_{jet} as a function of BⁿR^ma^pl^q (B-field, Cal radius, Cal cell area, Cal longitudinal segmentation), material and readout technology being undertaken.

Conclusions

• Unambiguous separation of charged and neutral hadron showers is the crux of this approach to detector design.

- hadron showers NOT well described analytically, fluctuations dominate # of hits, shape
- also investigating highly-segmented compensating calorimeter designs.
- Calorimeters designed for optimal 3-D shower reconstruction :
 - granularity << shower transverse size</p>

ļ

- segmentation << shower longitudinal size</p>
- Critically dependent on correct simulation of hadronic showers
 - Investing a lot of time and effort understanding & debugging Geant4 models.
 - Timely test-beam results crucial to demonstration of feasibility.
- Full Simulations + Reconstruction \rightarrow ILC detector design
 - Unique approach to calorimeter design
 - Ambitious and aggressive approach, strong desire to do it right.
 - Flexible simulation & reconstruction package allows fast variation of parameters.

Additional Information

- ILC Detector Simulation <u>http://www.lcsim.org</u>
- ILC Forum <u>http://forum.linearcollider.org</u>
- Wiki <u>http://confluence.slac.stanford.edu/display/ilc/</u>
- JAS3 <u>http://jas.freehep.org/jas3</u>
- WIRED4
- AIDA

- http://wired.freehep.org
- http://aida.freehep.org