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ATLAS detector

Solenoid Muon spectrometer

Hadronic Tile calorimeter

22 m

Inner Detector

Electromagnetic calorimeter Toroid
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? Testbeam measurements

e 8% of the modules calibrated at testbeam with
particles of known energies (from 1 to 350 GeV)

e Measurement of the response to pions, electrons
and muons

e Different energy reconstruction algorithms tested

Calibration triggers: CIS, Laser, Pedestal runs.
They will be used for monitoring and calibration in
ATLAS
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Tilecal

It is already

installed and in 4=

commissioning
phase in the pit
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? Cosmics triggered by TileCal

(commissioning)
ATLAS Atlantis Event: full_6.3.0_851_05031
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Calibration and monitoring

Physics
events
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Calibration cesium Laser Charge
and o Injection (CIS)
monitoring
systems

Diferent parts of TileCal readout are monitored and
calibrated by the various systems
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Charge Injection System (CIS) overview

Inject charge, from a high precision voltage source, into
calibration capacitors (then discharge then into the electronics)

To calibrate and monitor pulse readout electronics at O(1%) level
Demonstrate linearity over the working range for physics signals
— Watch for time evolution of linearity
Determine properties of the readout system
- Low gain: 1023 ADC counts / 800 pC = 1.3 counts / pC
e 800 pC full scale (~700 GeV) / channel
— High gain: 1023 counts / 800 pC * 64 = 82 counts / pC
e Muon in A-cell PMT = 0.2 pC (17 counts)

CALOR2006, Chicago



CIS Usage in ATLAS

Periodic CIS runs over full dynamic range during beam-
off periods

- Between LHC fills
— During maintenance periods

— Frequency to be determined by experience
e More frequent initially
e Less frequent once stability is demonstrated

Interleaved with data (mono-CIS events)

- Inject fixed amplitude signal during missing bunch
interval in LHC beam structure
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Sighal Reconstruction of CIS Data:
Three-Parameter Fit

Least squares fit for 3

parameters:

— TFitN (i) Time (ns)
— PedFitN (i) Pedestal
— EFitN (i) Amplitude

(Tile module N, PMT i)

CIS constants to convert ADC
counts to energy in units of pC
(via precision 100 pF capacitor)
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Example of ADC/pC fit (CIS run CTB '04)

One channel

odule , Card 0, Run
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@ Channel-to-channel variation (CTB ‘04)

Module 201, Run 1000916
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Evolution of calibration constants (CTB '04)
Middle Module (201, C-side)
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Laser calibration

Laser data used for:

e monitoring the stability (and correction) of gain
0(0.5%);

e checking the linearity of PMTs;

e studies on saturation recovery;

e studies on the calorimeter timing (synchronization)
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Laser system

-One clear fiber from the laser goes to every module and
it’s split to all PMTs

-Contrary to Cesium system, Laser system may monitor
short-term stability of the PMT

-Special Laser Runs will be taken in ATLAS:

- Linearity Runs (Multi-pulse) over the whole
dynamics (16 bits ~ 60000)

- Saturation studies (Multi-pulse): well above the
limit of 800 pC (~1.4 TeV/cell)
- Measurement of the number of photo-electrons (Mono-
pulse)

- Very high amplitudes similar to high energy jets
below saturation (Mono-pulse)
- Very low amplitudes similar to muons (Mono-pulse)

- Timing measurements
CALOR2006, Chicago

L4
-------

™
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Timing results

What we want: signal of projective particles must be synchronous

with clock
Barrel
Taking into account § °© —
. . = 2/ ndf ; .
the differences in the & |5 -sa77:o0as02 .
propagation Of .E p1 0.1+ 0.003603

signals, timings done 0
with projective 5
particles and with
laser can be easily
correlated!

1
cou
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Time with 25 ns beam
Laser can be used for the c
calorimeter timing
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Cesium calibration system

Source capsule

12.50

11.27

\ \ T T 10_00 _ : }
3so)\ ,///\/ 7' 7 — y
Cs source capsule design and the Cs system produces

a TileCal “X-ray”
sample of an empty capsule.
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? Cesium calibration system overview

e Cesium calibration system is based on a
movable 9 mCi 137Cs y-source

e Source is transported by a hydraulic system
to excite every scintillator tile.

e Current in PMTs connected to the cell is
measured by an integrator circuit

e The goal of the Cesium calibration system

Tile Size 8

is: o | ]
- To check the quality of the optical I ]
response and its uniformity (TR ll“““ ]
— To equalize the response of all read-out '
cells “l ]
— To monitor each cell over time and to = Bg;}nb ]
maintain the overall energy calibration Swj - g/ .
at a precision of 0.5% / SUETI AL N/

CALOR2006, Chicago Detection of bad tile-fibre coupling



Calculation of Cs response: Integral method

e Mean period of the peak grid is calculated. Left/right
boundaries of the cell are taken as the position of the
first/last peak -/+ half of the period.

e Integral within cell boundaries - I ..., - as well as integrals
below left and right tails - I,.q , I, - @re calculated.

e If cell is in the middle of the calorimeter, both tails are
considered to be good and Cs response is:

R=(Cl+ 1 + 1 )/width

center right

e Accuracy of the method ~ 0.2%

— Probably there are some systematics for cells at
boundaries
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Calculation of Cs response: Amplitude method

e Amplitude method allows one to calculate
individual tile response

e In this method response is fitted by sum of
gaussian + exp. tails for every tile

F Raw Data Cell B+2 Hole 8 PM § Tube §

e Accuracy of single tile response is about 2%, .. .
average cell response is known with 0.3%

Energy Leak Estimation

170 172.5 175 177.5 180 182.5 185 1875 190

precision |
—Precision of both integral and amplitude oo -
methods is better than overall stability of
the system
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e Cesium system is used for initial
equalization of cell responses

e Signals from all the cells are equalized
with an iterative procedure, the desired
HV is calculated from the formula

Amp ref e
Amp

HV ., = HV 4 X(

e Parameter 3 is measured for every
PMT during quality check, but is good
enough just a single value =7

e Procedure stops after 3t iteration,
when corrections are less than 0.5V
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Calorimeter non-uniformity after
HV equalization

e Overall cell-to-cell non-uniformity of the
calorimeter after Cesium equalization as seen by
muons and electrons is less than 3%

e Jt is worse than precision of Cs measurements
because muon, electron and Cesium source “see’
different part of the cell and scintillating tiles are
not identical (5-8% tile-to-tile variation observed
during instrumentation)

e Hadronic shower spans over many cells of the
calorimeter and non-uniformity of response for
single pions is at the level of 1.3%

4
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Calorimeter non-uniformity

Uniformity for pions
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? Cs monitoring of long-term stability

e Cesium system will be used in
ATLAS to monitor long term
stability of the calorimeter

e This was done already in 1997
and 1998 when stability of
preproduction PMT's were
studied

e With Cesium system not only
stability of PMT's, but also bad
tile-to-fiber coupling and aging
effects in scintillator will be
detected

e Stability of the PMT’s between
two Cesium runs will be
monitored by Laser system

CALOR2006, Chicago

.
=]
- =t

mean normalised response
=
o
N

0.98

0.97

0.96

0.95

Extended Barrels— Response vs time

Ageing of old pre-

e ey, production PMTs

| 24/3/98

=L 29/7/97

200
time in days




TileCal monitoring with minimum
bias events

MB events: inelastic pp collisions at low momentum
transfer

e Expected 23 MB events per bunch crossing at high luminosity
e Integrated energy is proportional to the LHC luminosity

e Energy distribution is symmetric in ¢

e Variations over TileCal An are of a factor 10

e Variations between the TileCal samples are of factor of 100

The signal generated in TileCal by the Minimum Bias
events will be used to monitor both the TileCal (pC/GeV
in cells) and the LHC machine performance (relative
luminosity) during data taking

CALOR2006, Chicago



? Ti |e M i n B i a S D* Mean energy deposition

;é - EA/ Example of the energy
e Typically low-energy forward jets A ner colision 1 e given Tecal
(few hard interactions -> N WJ cell (MS)
“physics”)
e Large fluctuation of energy e
deposition in a given cell S
e Average MinBias signal spans a SRS B (1117 I T e
broad range of frequencies and | |
amplitudes
e Slow integration of PMT SRR S S Gl S AR S S A A i
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A set of needed histograms @ EF :

+ Most energetic Tower (1-dim
histo & eta-phi)

+ All towers channel-by-cannel

+ All & most energetic cells (E/time
diff by PMTSs)

+ TileMulID back-to-back objects

+ Noise-per-channel

+ (Fraction of) coherent noise to
average noise

+ more possible!

(ATLAS offline software running online)



In-situ calibration strategy for ATLAS

=  Global E4 bias < 0.6 %
Correct for detector effects iﬁm 2 I
Recovery methods: weighting o B
techniques, energy flow method oo [
Golden channels: w0000 = | e
E/p for a single hadron (usually from 1) N O comapution
with 10 fb-1 of data (one year of low W — deap
luminosity, 320k signal events) may reach 0.6% B
level in jet E calibration o U i e L
. i l L.5 el 25
Z/y+jet pT balance E/p
with 10 fb-1 of data may reach 1% level in jet E calibration and 1% linearity
t->Wb->jjb

with 10 fb-1 of data may reach 2% level in jet E calibration and 2% linearity

Concerns
limited statistics and huge number of calibration constants (usually
both energy and n dependent)



Conclusions (1)

e The Cesium, Laser and Charge Injection calibration
systems allow to calibrate and to monitor the Tile
Calorimeter response with 0.5-1% precision

o After HV equalization overall cell-to-cell non-

uniformity of the calorimeter measured with electron
and muon beams is better than 3 %

e Non-uniformity of the calorimeter response for
hadronic showers is at the level of 1.0 - 1.5%
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Conclusions (2)

Other important TileCal monitoring systems were not
presented in this talk, like the HV and Low Voltage
monitoring (Detector Control System) or the Cooling
system (for temperature stability)

After the testbeam and the commissioning phase, the
different calibration and monitoring systems are
ready, and waiting for the first data taking in one
year from now
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Thank you!
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Backup slides
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ATLAS Calorimetry EM Accordion

Calorimeters
Hadronic Tile
Calorimeters ‘ ;
I _______. ____________
———— . . .

Forward LAr
Calorimeters

Hadronic LAr End Cap
Calorimeters
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TileCal

Iron - scintillating tiles sampling
calorimeter

Resolution: o 950%

E JVE
Divided into 3 parts :
el Barrel (|n| < 1)
o2 Extended Barrel
(0.8 <|n| < 1.7)

Each part consists of 64 wedges




Testbeam setup at H8
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Standalone TileCal testbeam



The ATLAS H8 combined testbeam
layout in 2004

Test in beam of a slice of
ATLAS
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\ Tile hadronic

barrel calorimeter &
ext. barrel

Liquid Argon
electromagnetic
calorimeter

Transition
Radiation
Tracker

\

Magnet



Tile calorimeter performance for pions

Examples of old (published)

testbeam results. More recent

results presented in another talk

1.1 (after'vvelngtHWQ )

Response linearity = #dt
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CIS Fits for Both Gains

Low Gain High Gain

TileCal Run 0220763 TileCal Run 0220763

T T [EEm—— i B B B B T LI I T I

140 T 3 . T ; ]
: : : : 641 pC ] 160 i S 1 1 S Qi=1.3pC i .|

Q=

3 3 3 ‘ . Armp= 81.4 counts | I | | | | \  Amp= 104.2 counts]

Phs= —4.625ins Phs= 10.1 nsi

120 bbb
3 1P8d= 51.7 counts A

Péd= 6@.4 counts |

100
80

phase= 224 | ] 80

60 L
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of T of N S
1 2 3 4 5 6 7 8 9 \/ 2 3 4 5 6 7 8 9
Evt 21012 Card 1 LoGain N1 Evt 1000 Card 1 HiGain N1

Leakage pulse

Pulse shapes from 2002 but have not changed.
CALOR2006, Chicago



Change in ADC/pC Between July and October ‘04
Top Module (202, C-side)

| Module 202, Percent change between July and October |

High Gain
& ...lll.l...Il......l...........
CIS summary:
] constants
74 75 30 35 40 & I
Channel Number Stable at per‘mll
Low Gain
: level over
é several months
g ...l......l..l.....l..l...l.ll........l....l.l
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New (3)
Old 2
sources (2) Produced by Isotope Products,

Produced in JINR, Dubna Prague

~350 MBq

3713RP, ~250 3712RP, ~285 MBq
MBq 8 years 5 years T T 1T 1 ] Ib\ | T 11 | T lloh_
40 - T T T ] E Entries 86;
= T :@;1' IS T ] 11(832E 0 . Mean 1,183
3 B M Y 20 - RMS 0.9610E-03
30 @%) 0 UDFLW U008
= UDERW -0606 - OVFLW 0.0000
25 o ]64]0“?0025 - x*/ ndf 0.0000/ ) )
0 L AN BRSE 0 Constant s7. Intercalibration
E L2201 ~ Mean 1.1¢ <02%
15 — 0.1611E-027] 0 Sigma 0.9637E-(.
10 [ E CF -
s \ E 0 =
O b1 [ L T AR A B B
1.2 1.21 1.22 1.23 1.24 0 L INENENENE) ST N AR .
1.16 1.2

1.17 1.18 1.19
3712 vs 3713

4089 vs 3713



@ Tile and cell uniformity with cesium

Cesium calibration
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ADC Counts
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Comparison between cesium and

MUOoNS
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Muon (fC/period)

40

38

37
36

35

33-
32-
31-
30-

29

Good correlation
between Cs and
muon response

39 -

every point corresponds to
a part of cell called segment

Correlation = 67%

1600 1700 1800 1900 2000 2100 2200
Cesium (ADC counts/period)

Data from 334 cells
(12 EBs and 5 Barrels).

2300



Monitored quantities with Minimum Bias

Estimated #scans
over all channels
(#sweeps) to reach

Item uantit Comments
Q Y 1% accuracy
Relative MB current rate In the selected part of the
Luminosity calorimeter few
Relative MB current For example:
Beam balance Ratio of the MB currents in tens
Quality the central and forward
parts
MB current in a Monitored in time and
TCal cell given channel compared to the similar tens
Perform. cells
Monitoring Dead channels,
system saturation, etc few
Perform.

CALOR2006, Chicago

Cell #measurements per PMT to
reach 1% accuracy on PC/GeV
ratio
Al 4
Al12 27
A16 88
BC1 5
B11 33
B15 9
DO 37
D2 48
D6 4




Pedestal data (run 4 modules in parallel)

» Use pedestal data to validate the MinBias readout
» Characteristic quantity: Channel-by-channel pedestal RMS
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