High Performance PbWO₄- Lead Glass Hybrid Calorimeter at Jefferson Lab

M. Kubantsev ITEP, Moscow, Russia/Northwestern University, Evanston, USA A. Gasparian NC A&T State University Greensboro, NC USA I.Larin ITEP, Moscow,Russia for the PrimEx Collaboration

Outline

- **1. Requirements for the Calorimeter**
- 2. The HYCAL calorimeter design
- 3. Physics run performance
- 4. Summary.

Requirements for the Calorimeter

Forward electro-photoproduction of neutral mesons ($\pi^{\circ}\eta \eta'$)

@ 1- 10 GeV requires:

□ High energy resolution;

□ High position resolution;

□ Good photon detection efficiency @ few GeV;

□ Large geometrical acceptance.

Design Concept and Resolutions

Design Concept

Design Concept

PbWO₄ Crystal Dimensions

Dimensions:

Calor-2006, June 05

Tolerances (mm):

20.5 x 20.5 x 180.0 mm³

PbWO₄ Crystal Optical Properties

<u>HYCAL – The Hybrid Calorimeter</u>

Calor-2006, June 05

HYCAL Calibration

Scheme of calorimeter irradiation with tagged photon beam during calibration

HYCAL Energy Resolution

Energy resolution for the PWO crystal central part and lead glass periphery for tagged photons during calibration run

Calor-2006, June 05

HYCAL Energy Resolution

Calor-2006, June 05

HYCAL Position Resolution

HYCAL Light Monitoring

Light monitoring system with blue LED: stability over period of 500 hours

HYCAL Performance for Physics Processes:

Compton scattering at small angles mostly (only PWO):

- Pt = 0 constraint
- angular correlations as additional check of resolution

 π^{0} production and decay to two photons at all angles (PWO and LG):

- constraint on mass of π^0
- comparison of regions of the HYCAL: PWO, LG, PWO-LG border

HYCAL Resolution for Compton Events:

Ratio of sum of electron and photon energies measured in the calorimeter and tagged γ energy at ~5.2 GeV

HYCAL π^0 Resolution: PWO

<u>HYCAL π^0 Resolution: PWO-LG Border</u>

<u>HYCAL π^0 Resolution: PWO + LG</u>

<u>π^o Angular Distribution</u> (experiment, preliminary)

Summary

- A high performance hybrid PbWO₄ calorimeter(~2000 channels) has been developed, constructed and run in PrimEx experiment at JLab.
- HYCAL took physics data in November 2004:
 Energy and position calibration with tagged photons of 1 5.5 GeV
 - □ π^{o} mass resolution $\sigma\pi^{o}$ = 2.3 MeV (PWO),
 - (with energy constraint on the tagger 1.3 MeV)
 - □ Rich high quality data sets have been collected to extract π^{o} life time
- We expect first physics results this summer:
 - http://www.jlab.org/primex/
 - This project is supported by the US NSF MRI grant (PHY-0079840)
 - This project is supported by the RFBR Grant 04-02-17466

Spare slides

Calor-2006, June 05

PbWO₄ Detector Response vs. Dose Rate

Calor-2006, June 05

Reconstruction of photon positions in the transition region between PWO crystal central part and lead glass periphery

Calor-2006, June 05

HYCAL Position Resolution

Coordinate of the cluster: $X_c = \Sigma(x_i w_i) / \Sigma w_i$ Center-of-Gravity: $W_i = E_i$ Logarithmic: $W_i = 4.2 + \ln(E_i/E_9)$