BNL, RHIC, PHENIX

Forward Calorimeters for the PHENIX Upgrade

6/8/2006 BNL

PHENIX original

New physics -> old observables --new phase-space regiondirect photons: $p_T>2$ GeV/cdirect leptons: isolationjets: total energy, leading π^0 ;

 π^0 's

Detector specifications

π0

Reasonable energy resolution for em probes;

Separation between em and hadronic signals;

Ability to reconstruct overlapping photons;

Jets

Cone energy measurements

PHENIX Upgrade

Considerations & compromises

- Designed to produce clean sample of electromagnetic showers
 - Segmented em-section: 7 + 5 X₀
 - □ Hadronic segment: ~ 1 Λ_{abs}
 - Lateral segmentation: <L
- Optimized for π⁰ reconstruction to -em energy 30 GeV/c
 - Converter and PreShower layers to see photons;
 - ShowerMax layer to measure decay asymmetry

-total energy

-Leading π^0 's

3-vector

Jets:

π^0 tracking: 5 GeV/c example

Fit to extract decay asymmetry

Concept works on simulated data, needs further tuning with simulated and test beam data

*π*0 efficiency: zero approximation

Up-to-date

- Optimize detector, develop construction design;
- Develop, prototype and test Si sensors;
- Develop, prototype and test Si ladders (StriPixels and Pads);
- Develop, prototype and test readout.

Major milestones:

Proof-of-principle prototype: built and tested in the beam in 2005;

System prototype to be constructed and tested in the beam in 2007.

R&D 2004-2005: BNL-MSU-UCR-RIKEN

Sensors

DC coupled, pad structured - completed

AC coupled, pad structued - *completed*

DC coupled, r-biased, pad structured – *at ELMA and ON Semi*

First confirmation that technology is robust

Position and directional measurements

Calorimeter design

Pad-structured ROU (ladder) design

Implementation: BNL/Komposit (Ekaterinbourg, Russia)

Summary

- There is the most ambitious calorimeter project I ever considered
- It will work as effective π⁰ reconstruction tool if tower occupancy is below 10% and vertex-to-detector separation is sufficient for two photons from π0 decay to spread for more then ~.2R_{moliere}
- By the end of 2007 we will
 - optimize design and performance;
 - test production chain;
 - □ accumulate test beam data and build analysis chain;
- If expectations are confirmed we will follow this design (with constrains removed) for e-RHIC detector at BNL.

BACKUP's

Optimization: plate thicknesses vs energy resolution and hadron rejection

StriPixel ROU (ladder) design

Lateral

15

Shower development

Energy measurements

Measured resolution ~ 11% driven by very thick plates in Hadronic segments

