

Outline

-What is Dark Matter? -Detection Strategy -NE Phonon Detectors -BOD: Complementarity -Room for Improvement

Calorimetry with None equilibrium Phonon Detectors Michael Dragowsky Case Western Reserve University For the Cryogenic Dark Matter Search

Dark Matter Evidence

Gravitational Lens Galaxy Cluster 0024+1654 Hubble Space Telescope • WFPC2

Dark Matter (non-luminous) only sensed through Gravity

Compelling Evidence from:

- Astronomy/Astrophysics
 - Large-Scale Structure
 - Galaxy clusters
 - Galaxy rotation curves
 - Dwarf galaxies
- Cosmology
 - Cosmic Microwave Background
 - SN-Ia
 - Big-Bang Nucleosynthesis
- Nonbaryonic and Nonrelativistic Dark Matter dominates the Matter Budget

PRC96-10 • ST Scl OPO • April 24, 1996 • W. Colley (Princeton Univ.), NASA

Dark Matter and Particle Theory

- Why is mew << mPlanck? (Hierarchy Problem)
 - Supersymmetry
 - Each boson, a fermion superpartner, and vice versa
 - it conserved, cterstable, neutral, particle
 - Ext A n r F
 - k za krein dark matter
 - Universal extra dimensions
- QCD Strong-CP Problem
 - Axions
 - ultra-light particles associated with Pecci-Quinn symmetry to preserve CP with the strong interaction
 - Strong **B** induces conversion to photon (microwave)

Big Bang Relic Particles

- Early: equilibrium with 'soup'
- Freeze-out: |, | no longer meet
- Late: stable particles persist
- Particle mass and cross section wellmatched to deduced DM mass density, and very likely accessible with accelerators
- Potential observables: Co-moving N, m₁ and (_A

$$\frac{dN}{dE_r} = \frac{\sigma_0 \rho_{\chi}}{2\mu^2 m_{\chi}} F^2(q) \int_{v_{min}}^{v_{esc}} \frac{f(v)}{v} dv$$

•DM density 0.3 GeV/c²/cm³
•f(v) Maxwell-Boltzmann 220km/s

Production suppressed (T<m) 0.01 Comoving Number Density Freeze out Increasing $\langle \sigma_{A} v \rangle$ 10-7 10-8 10-9 10-10 10-11 ~exp(-m/T) 10-18 10-13 10-14 N_{EQ} 10-17 10-18 10-19 10-2 1000 10 100 - ... m_{\perp}/T (time \bigcirc)

Kamionkowski, hep-ph/0210370

Production = Annihilation $(T \ge m_1)$

Cryogenic Dark Matter Search

WIMP dark matter:
Big-Bang relics that are neutral, non-relativistic, and massive
experimental signature: low-E nuclear recoils

Few-MeV neutrons

constitute a nonrejectable background. Electron recoils from radioactive backgrounds will be far more common. Reduce backgrounds (Shielding, site location and materials selection and handling) Event-by-event nuclear and electron recoil discrimination with...

Really Cool Detectors: ZIPs

Measure ionization

- •low-field (~volts/cm)
- •Segmented contacts define fiducial volume.

•QET* collect athermal phonons

- •Type-ind. recoil energy
- ·µs leading-edge timing

Ionization/phonon energy distinguishes electron- and nuclear-recoil events

Low-Energy Electron Stopping Power

- Sub-MeV energy deposition in Si/Ge
 - free carrier pairs (e-h)
 - optical phonons (~4Thz)
 - Lattice damage (NRs)
- Optical phonons relax diffusively to acoustic phonons ~ 1 mm
- Acoustic phonons travel ballistically, and timing info aids in ER v. NR evaluation

Phonon Energy Collection

The Quasi-Particle Assisted Trap Electrothermal Feedback Transition-Edge Sensor

• Energy transport

1.Non-equilibrium phonons dissociate Cooper pairs ($2\Delta = 0.3$ meV)

2. Quasiparticles in Al diffuse (some losses)

3. Quasiparticles enter W, raise local temperature and resistance

Transition Edge Sensor Obtaining Pulses

Weak thermal link to substrate needed for ™T --> ™R.

Consider small heat pulse $\otimes T$, expand heat balance equation to 1st order:

$$C\frac{d\Delta T}{dt} = -\frac{P_0\alpha}{T_0}\Delta T - g\Delta T$$

$$\tau = \frac{C}{g} \frac{1}{1 + \frac{\alpha}{n}(1 - \frac{T_s^n}{T_0^n})}$$

Extreme electrothermal feedback for $T_s \leftrightarrow T_0$

Electrothermal Feedback TES Circuit

- Large area coverage 1036 TES in parallel
- Voltage bias achieves dynamic stability (ETF)
- Readout via 1-stage SQUID array at 600 mK
 - Minimize noise
 - L/R affects pulse duration

Pulse Shape Observables

- Pulse height, integral, start times and rise times amongst observables
- Ionization readout serves as event start time
- Phonon rise times vary by event position
 - Leading edge timing is \sim (s
 - Full development involves reflected phonons, q.p. diffusion time and TES thermal time constant
 - equilibrium phonons can't promote q.p. in Al

CDMS Instrumentation

Position and Energy **Delay Plot** Am²⁴¹ : © 14, 18, 20, 26, 60 kev D А 0 Energy (KeV) Cd¹⁰⁹ + Al foil : © 22 kev Cd¹⁰⁹ : © 22 kev **B** i.c. electr 63, 84 KeV C -5 <u>ֈֈՠՠ֎ՠՠ֎ՠՠ</u> 40 60 Energy (KeV) 0 Energy (KeV)

Soudan Underground Laboratory

=>

 Background-free experiment maximizes sensitivity Exposure ~ mass x time

CDMS-II Soudan facility

¹³³Ba In situ Photon Calibration

Calibration Linearity

WIMP search data

- Ionization linearity is checked from ⁶⁸Ga in detectors
- cosmogenic origin
- 10.36 keV photon
- Peak width is measure on stability as well as resolution
- Resolution ~5% in both Q and P, quite satisfactory for defining NR 10-100 keV acceptance window

Incomplete collection of charge suppresses ionization, thus also Ionization Yield

Need to enhance analysis

Understanding Surface Events

- Within ~10 microns of surface, reduced ionization signal
- Fortunately, phonon generation and transport differs as well
- Timing Parameters
 - Ionization-Phonon start time
 - Phonon risetime
- Data from in-situ calibrations
 - Red & Black: ¹³³Ba gammas
 - Blue: ²⁵²Cf neutrons
 - Excellent rejection
 - Modest efficiency reduction

WIMP search data (2004)

- Events passing all data selection, except timing
- ★ Event passes timing inside signal region
- Event passes timing, but outside signal region

Experimental Upper Limits

Scalar interactions 90% CL upper limits assuming standard halo, *A*² scaling PRL **96** 011302 (2006), astro-ph/0509259

- Live Time Period: 25 Mar - 8 Aug 2004
- Exposure after cuts
 - 34-kg/d Ge
 - 14-kg/d Si
 - Excludes significant regions of SUSY parameter space under some frameworks, e.g. some models with nonuniversal Higgs, squark, and slepton masses and neutralino masses <~700 GeV Ellis et al PRD 71/095007

Spin-dependent analysis: PRD **73**, 011102 (2006) astro-ph/0509269

Final CDMS-II Run Configuration

TOWER I	IOWER 2		
G 06	\$ 14		
G 11	S 28		
G 08	G 13		
\$ 03	S 25		
G 09	G 31		
8 01	S 26		
OPERATED IN SOUDAN			

Т

S 12	T
G 37	
S 10	
G 35	
G 34	
G 38	

Towers 4

TOWER	5

G 07	
G 36	
S 29	
G 26	
G 39	
G 24	
	G 07 G 36 S 29 G 26 G 39 G 24

Cooldown to begin mid-June 2006

Accelerator/Nonaccelerator Complementarity

Baltz

Battaglia Peskin

Wizansky

10-8

SuperCDMS 25 kg would see ~15 events

LHC data taking in ~1 year

Preferred Collisions

- Detection of dark matter via collisions with nuclei
 - most extensive discovery potential to high mass
 - observe the signal in multiple materials to study
 - providing annual modulations
- Indirect detection to map the galactic DM distribution
- DM at colliders
 - measure detailed properties
 - determine relic abundance

In Closing...

...Dark matter direct detection relies on distinguishing low-energy nuclear- and electron-recoil events

...Cryogenic nonequilibrium phonon sensors have demonstrated high sensitivity rejection of electron-recoil with high efficiency to detect nuclear-recoils

...Understanding the nature of dark matter requires direct detection and accelerators

...CDMS detectors are coming online for a ~5 kg-y exposure; SuperCDMS is ready to build new 25 kg; We welcome new collaborators!

Enhancing Background Rejection

- Baseline (25-kg)
 - Increase detector thickness
 - Hydrogenate the a-Si blocking layer
 - Full-wafer mask
- Next-generation Scaling
 - New electrode/sensor arrangements
 - Interdigitate ionization and phonons
 - Increase quasi-particle trapping efficiency

Interdigitated Ionization electrodes

- Alternative method to identify near-surface events
 - Ionization electrodes on opposing surfaces
 - Bias rails on bottom surface connected to other Qamp
 - Phonon sensors on both sides are virtual ground reference.

Electric field configuration

- Design details
 - To maintain ~60 pF of capacitance requires keeping bias and ground rails ~ 1 mm apart.

Surface event identification

• Bulk events are coincident, equal in magnitude in the charge channels.

 The charge pulse shapes for surface events are also slightly different from bulk events, so a Chi2 cut identifies surface events.

• Si 1cm substrate, -2 V bias bottom electrode, +2 V top electode.

Electron vs nuclear recoil discrimination

- Pre-ion-implanted Si detector, one phonon channel not working, but ...
- Went ahead and performed Co-60 and Cf-252 external source calibrations.

- Expected nuclear recoil band events (red) clearly visible.
- Calibrations shown are only approximate.

Big Bang Nucleosynthesis

- Abundances calculable from b/γ
- Observational Findings
 - Unprocessed d, ⁴He and ⁷Li
 - Primordial d:
 - from high-z hydrogen clouds backli⁻ by Quasars
 - Lyman-α absorption line freq differ: for d and h
 - $\wedge_{b}h^{2} = 0.018 \pm .006$

Fields and Sarkar "in The Review of Particle Properties" 2004 astro-ph/0406663

Cosmic Microwave Background

http://lambda.gsfc.nasa.gov

- Observational foundation of the Big Bang: Relic photons from neutral atom formation ("radiation decoupling epoch")
- WMAP temp. anisotropy map
 - Interpret power spectrum data by fit to cosmology parameters
 - accoustic peaks 1 & 2 inform:
 - $h^2 = 0.135$ (30%)
 - $h^2 = 0.0224$ (5%)

100

Multipole order *l*

1000

10

0

ZIP Detector Lifecycle

From Paul Brink

³He/⁴He Dilution Refrigerator

5 mK by Perspiration

- CDMS TES tuned to 80 mK, absorber colder (50 mK)
- Evaporative Cooling
 - ³He/⁴He mixture separates into concentrated and dilute phases that stratify below 1K.
 - Cooling by ³He evaporation from concentrated to dilute phase
 - Continuous cooling below 10 mK fror ³He circulated through superfluid ⁴He
- A little help required
 - Radiation shields externally cooled
 - Vacuum to prevent convection
 - Very efficient heat exchangers to recondense the ³He.

The CDMS Challenge of Scaling Up

- Enhanced background reduction
 - "Clean" handling
 - Enhanced analysis
- Production
 - TES thin-film non-uniformity
 - Photolithography by stitches
- Heat Load
 - Replace the FETs
 - Improve cryogenic operations
- Readout Instrumentation
 - Multiplexing
 - Reduce noise
- Mundane Logistics
 - Packaging
 - Calibration with external sources

CDMS SNOLAB - Phase A: 3"x1" => 0.64 kg Ge 7 x 6-Det Towers = 42 Dets =>to 26.7 kg Ge Soudan -> SNOLAB SUF testing (2 batches)

CDMS SNOLAB - Phase B: 3"x1" => 0.64 kg Ge 19 x 12-Det Towers = 228 Dets =>to 145 kg Ge Soudan/SUF testing (6 batches)

CDMS SNOLAB - Phase C: 3"x1" => 0.64 kg Ge 73 x 24 Det Towers = 1752 =>to 1,113 kg Ge Soudan/SUF testing (45 batches)

SuperCDMS Development

- Scale-up CDMS ZIP mass
 - More mass per ZIP
 - No cryo-testing for fab
- ZIP refinements in parallel, leading to even better bkg rejection
- 25 kg expt (Phase A)
- 150 kg expt (Phase B)
- Future -> 1 ton

<u>Development to preceed experiment at each stage,</u> <u>leveraging on low-risk "baseline", and evaluating</u> <u>multiple options to enhance background rejection.</u>