

Mark Mattson Wayne State University for the CDF Calorimeter Group CALOR 2006 June 5, 2006

Plan

- CDF II calorimetry
 - Mix of systems made during Run I, before Run II, and upgrades since the beginning of data taking
 - Not discussing the muon detectors, miniplug (extreme forward calorimeters), or the EM-timing system (talk by Max Goncharov after the coffee break)
 - Talks on specific systems were made at multiple conferences (CALOR02, Snowmass05, etc.)
- Operational experience
 - Problems discovered during data taking
- Selected recent physics results
 - Demonstrate the calorimeter capabilities

CDF II Calorimeters

- Phi 15 degree wedges
 - Same Central and Endwall
 calorimeters from Run I
 (scintillator plate with WLS
 bars)
 - New for Run II
 - Plug Calorimeter:
 scintillator tile with WLS
 fibers replaced the Run I
 gas calorimetry
 - EM and HAD readout electronics

Fall 2004

 Central Preshower and Crack Detectors

Plug Calorimeter

Similar Technology for Plug and Central Calorimeters

	Central (Endwall)	Plug
EM lead-scintillator sampling	18 radiation lengths $\sigma_E/E = 13.5\%/\sqrt{E} \oplus 1.5\%$ $ \eta < 1.1$	23.2 radiation lengths $\sigma_E/E = 16\%/\sqrt{E} \oplus 1\%$ $1.1 < \eta < 3.64$
HAD steel-scintillator sampling	4.7 interaction lengths CHA $\sigma_E/E = 50\%/\sqrt{E} \oplus 3\%$ WHA $\sigma_E/E = 75\%/\sqrt{E} \oplus 4\%$ $ \eta < 1.3$	6.8 interaction lengths $\sigma_E/E = 80\%/\sqrt{E} \oplus 5\%$ $1.2 < \eta < 3.64$
Shower Maximum (ES)	PWC for phi scintillating strips for Z ~ 2 mm res for W electrons	2 layers scintillating strip/WLS fiber 1.5 mm wire res
Pre-Shower (PR)	12.5 x 12.5 x 2 cm tiles	1 cm thick tiles shadow PEM towers

Central Upgrades

- CPR Central Pre-Radiator, tile-fiber system similar to the Plug
 - Occupancy of existing gas Pre-shower would have been too high
- CCR Central "Crack" gas detector
 - 7% of phi angle at edges of the wedges recovered

Steve Kuhlmann

(Argonne National Laboratory)

presented by: G. Introzzi (INFN & Univ. of Pavia)

ILC workshop - Snowmass - August 23, 2005

Pre-shower / Crack Detectors

Front End Readout Electronics

- 800 GeV range
- Low noise: 5-6
 MeV for PEM/
 PHA
- 132 nsec charge integration
- QIE6: 10 bit ADC
- 4416 CAFEs in detector hall

Readout Electronics

- Holds all of the CAFE cards for a wedge of the system
- Digital tower sums for L1 trigger
- Nearly no deadtime
- 240 ADMEMs in detector hall

FER Operational Issues

- 132 nsec charge integration gate collects 93.6% (HAD) or 97.4% (EM) of the charge
- CALOR02 reported failure rate
 - CAFE ~0.65% per year, (~30 units)
 - ADMEM ~3% per year (~8 units)
- Current failure rate is about half of that
 - would be even less, if not for the rare unscheduled power outages

Jet Energy Scale

- "Determination of the Jet Energy Scale at the Collider Detector at Fermilab", NIMPR accepted (hep-ex/0510047)
- EM tested with Z -> ee
- Had tested with 60 GeV pion test beam

Jet Energy Scale

- Pedro Movilla Fernandez will discuss the CDF calorimeter simulation
- Z mass stable versus time to within 0.3%
- Mean muon energy from W->mu nu candidates within 1.5%
- For more information, refer to the paper
 - www-cdf.fnal.gov/physics/new/top/public/jets/cdfpublic.html

Cross-talk for MAPMT

- Gap between fiber cookie and MAPMT for the PES was slightly larger than expected
 - 2.5mm, compared to 1mm for test stand
- 1 mm fibers
- Cross-talk was 6%, expected ~0.5%
- Installed baffles ("blinders")
 - Crosstalk ~ 1.4%
 - Signal reduction 8.5%

Plug PMT gain loss

- Monitor light energy response decrease, due to scintillator and PMT aging
- Unexpected PMT gain loss,
 largest for towers near the
 beamline
- Plug laser and radioactive source calibrations reveal that it is not from scintillator aging
- Not seen in the plug showermax (PES) or pre-shower (PPR) detectors

PMT Gain Loss

Tower gain drops seen in laser calibration in a 3 month span in 2002

- Reduce integrated charge
 - Lower gains for high eta tubes
 - Leave HV on standby during beam scraping
- Didn't eliminate the problem, but gain loss is acceptable for running through 2009
 - Low eta towers: 1% loss in 2002, 3% loss in 2003
 - High eta towers: ~20% loss in 2002, 8% loss in 2003
- Not completely understood

Selected Results

"Top Quark Mass Measurement Using the Template Method in the Lepton + Jets Channel at CDF II"

Phys. Rev. D. 73, 032003 (2006)

"Measurement of the forward-backward charge asymmetry of electron-positron pairs in pbar-p collisons at sqrt(s)=1.96 TeV"

PRD 71, 052002 (hep-ex/0411059)

Recent update with 5x integrated luminosity

preliminary

http://www-cdf.fnal.gov/ physics/ewk/2006/afb

"Measurement of sigma(p-pbar->W) x BR(W->e nu) with electron identified by the Plug Calorimeter (1.2<letal<2.8)" preliminary http://www-cdf.fnal.gov/physics/ewk/2006/plugw

Cross-section consistent with results using electrons in the Central Cal only Missing Et resembles the electron Pt, overall measurement of recoil is good

CDF RUN 2 Preliminary — 223 pb⁻¹

In Closing...

- Plug Calorimeter has been operating since the beginning of Run II
- All calorimeter upgrades for Run II have been completed
 - During the recent extended shutdown, only maintainance and fixes for dead channels
- Expect more results to take advantage of the upgrades
 - 380/pb --> Sept 2004
 - Results with up to 1/fb