GLD Calorimeter

Tohru Takeshita Shinshu U. for GLD-CAL group

© illustrated Shigemi Numazawa

outline concept implementation experience outlook

ILC and its Physics

- e+e- collision with ~1TeV Linear Collider
- Final states will be dominated by narrow jets
- Jets come from W/Z/g/q
- Task : identify these partons/gauges boson from Jets HCAL

e e " qq@350GeV

TTCalor06

ECAL

TPC

Particle Flow oriented Jet is measured by

- Tracker : charged 65% in a jet
- ECAL : photon 25 % in a jet

• HCAL : neutral hadron 10% in a jet

e+e- > WW at 250GeV

GLD Concepts

- Large detector
 - to measure neutral pion (ECAL)
 - to measure neutral hadrons (HCAL)
- smaller segmentation

Large

GLD features

• to identify and measure particles in a jet • Large detector + super conducting magnet • HCAL inside coil (3.5m diameter max) • Largest TPC (Tracker : 2m dia.) 4.85 ←0.05 7.65 45

4.0

3.5

 2.1_{-} 2.0

0.45

CA]

2.6-

8.0

GLD-Calorimeter

- scintillator strip calorimeter
- ECAL : R = 2.1 ~ 2.3 m (0.2m) :
 - 6 mm/layer (3 + 2 + 1)mm
 - 33 layers, 28X0
- HCAL : R = 2.3 ~ 3.5 m (1.2m) :
 - 26 mm/layer (20 + 5 + 1)mm
 - 46 layers , 5.5 mint

1cm

photon sensor

TTCalor06

WISF

GLD-Calorimeter cont.

GLC-CAL parameters

	absorber	active material	Layers barrel/ec	strip length	N. R/O
ECAL	W 3mm	scintillator 2mm	33/ 33	5cm?	~10M ch
HCAL	Pb 20mm comp	scintillator 5mm ensating	46/ 48	20cm?	~4M ch

TTCalor06

SSCAL experince cont.

SSCAL experince cont.

pictorial detector

4 GeV e, θ =15.9 degree

Integrated lateral shower profil

• Photon sensor (MPPC) and prototype test at beam MPPC semiconductor pixel photon sensor with Geiger or Limited Geiger Mode

MPPC (Multi Pixel Photon Counter) by HPK

• linearity is relevant for calorimeter however, limited by number of pixels

• fixed to a fiber diameter (~1mm)

400pix sample

TTCalor06

MPPC (HPK) pixel test by laser scanner

0.1

0.45

0.4

0.35

0.3

0.25

0.2

0.15

open issues

 optimization of detector parameters by PF

• strip length/width (ECAL and HCAL)

electronics development
number of channels

TTCalor06

summary and outlook

• GLD calorimeter

• scintillator based calorimeter

• under development

• MPPC & tools (PFA)

• beam test to verify PFA

• ILC-CAL

backups

• compensation in HCAL

0

compensation

transverse spread of EM shower

