

Status of GLAST Csl Calorimeter

A. Chekhtman

On behalf of GLAST collaboration

A.Chekhtman

Main instrument of GLAST

Large Area Telescope

4x4 array of identical modules Detector dimensions 1.75m x 1.75m x 1.0 m

Sensitive to photons with energies 20 MeV – 300 GeV

and polar angles upto 70 degrees

Tracker module

Si-strip detectors tungsten radiators

Anticoincidence Detector

segmented plastic scintillator

Calorimeter module

hodoscopic CsI crystal array

A.Chekhtman

Calorimeter Module

- □ 8 layers of 12 Csl(Tl) Crystals
 - Crystal dimensions: 26.7 mm x 19.9 mm x 326 mm
 - Hodoscopic stacking alternating orthogonal layers
 - Light tapering along the crystal (~0.65) for longitudinal position measurement
 - Total thickness 8.5 X₀
- Dual PIN photodiode on each end of crystals
 - Longitudinal position measurement by left/right asymmetry

3

 Electronics boards attached to each side of module

Status of GLAST Csl Calorimeter

CALOR2006, Chicago, June 5 - 9, 2005

Calorimeter Assembly Flow

Calorimeter production responsibilities

- □ Csl Crystals
 - Crystal production AMCRYS, Kharkov, Ukraine
 - Production management & quality control KTH + Kalmar University, Sweden
- Dual PIN photododes
 - Hamamatsu Photonics, Japan
- Crystal Detector Elements manufacturing
 - Swales Aerospace+Naval Research Lab
- □ Carbon composite structure
 - LLR Ecole Politechnique, France
- □ Analog Front End Electronics
 - NRL+SLAC

- □ Calorimeter module assembly and test
 - NRL

CALOR2006, Chicago, June 5 - 9, 2005

PreElectronics Module (PEM) Assembly Naval Research Lab

Front-End Electronics of one crystal

PEM Checkout – Light Yield

- □ Using cosmic muons
 - Verify PIN diode bonds end vs end, big vs small
 - Check light yield

8

Map light asymmetry

CALOR2006, Chicago, June 5 - 9, 2005

CAL Front End Electronics Naval Research Lab

A.Chekhtman

Status of GLAST Csl Calorimeter

CALOR2006, Chicago, June 5 – 9, 2005

Environmental Testing

Setup for Vibration Testing

FM114 – 118 in TVAC chamber

10

EMI/EMC Testing

"Big Blue" ThermalVac Chamber

Status of GLAST Csl Calorimeter

Further steps in LAT preparation for launch

- □ LAT Integration and tests (CAL+TKR+ACD+electronics)
 - SLAC, March, 2005 May, 2006
- □ LAT environmental testing (vibration, thermo-vacuum, EMI, acoustic)
 - NRL, May-September, 2006
- In parallel beam test of calibration unit (spare modules of calorimeter, tracker and ACD)
 - CERN, July-September, 2006
- □ Integration with spacecraft
 - Spectrum Astro, starting September, 2006
- □ Launch September, 2007

CALOR2006, Chicago, June 5 – 9, 2005

LAT integration at SLAC

Insertion of a calorimeter module into the grid

All 16 towers in place

CALOR2006, Chicago, June 5 – 9, 2005

Cosmic muon selection for energy scale

calibration

- Vertical muons selection :
 - 4 crystals in a column above the threshold (~ 0.2 MIP)
 - All other crystals below the threshold
- This selection significantly decreases the low energy tail from muons with partial pathlength (clipping a corner of a crystal).

A.Chekhtman

Energy scale calibration with cosmic muons

Energy scale stability during environmental testing of individual module

- X axis: energy scale calibration results for all 96 crystals of module FM112 immediately after assembly on Feb 1,2005
- Y axis: energy scale calibration on April 16, 2005 after
 - Burst and sine vibration test in all 3 directions at launch levels
 - 4 thermal cycles between -30C and +50C

- □ In ideal case, all 96 points should be on the blue line
- □ Spread along the line corresponds to ~10 % crystal to crystal non-uniformity within a module
- □ In reality there is some decrease of calorimeter response by 1-2 %. Possible reasons :
 - Small drift in electronics chain
 - Small degradation of optical properties of PIN diodes bonding to crystals
- **D** The change is very small and will be taken into account by calibration

GLAST LAT Project CAL Performance after LAT integration (all 1536 crystals)

- Pedestal noise
 - 10 adc units ~ 0.3 MeV for LEX8 ____ range
- **Diode light yield** No broken optical bonds

Calorimeter calibration in flight

- To calibrate calorimeter response in 4 energy ranges we plan to use energy depositions of heavy ions from galactic cosmic rays
 - They are relativistic and produce well defined peaks
 - Highest peak (Fe) is at 11% of maximum energy of dynamic range
 - We should select heavy ions without nuclear interactions in the calorimeter (30-40% of all heavy ions)
- Scintillation signals produced by heavy ions and photons are different
 - this difference ("quenching factor") for GLAST crystal detector elements was measured during beam test at GSI (Darmshtadt) in November, 2003
 - results of this measurement are submitted to NIM in December, 2005 (B.Lott et al. Response of GLAST LAT calorimeter to relativistic heavy ions)

Range	5-σ Emin (MeV)	Emax (MeV)	MeV/ADC
LEX8	2	100	0.03
LEX1	2	1000	0.27
HEX8	60	8000	2.2
HEX1	60	70000	19

Species (Z)	Abundance Relative to H	Enormal (MeV)
He (2)	14%	45
C (6)	0.38%	400
N (7)	0. 096%	550
O (8)	0.35%	720
Ne (10)	0.062%	1120
Mg (12)	0.073%	1610
Si (14)	0.054%	2200
Fe (26)	0.041%	7600

Quenching factors

Two plots from NIM GSI paper (B.Lott et al. Response of GLAST LAT calorimeter to relativistic heavy ions)

□ Quenching factor measured for E=1.7 GeV/nuclon

- Unexpected result: scintillation signal for carbon is 20% bigger than for proton
- Measurements with GLAST electronics (EM) and good lab electronics (minical) are consistent
- Measurements at GSI seem to be consistent with earlier measurements at low energies at GANIL

The GLAST-LAT Calibration Unit

- Calibration unit is made of spare modules (3 calorimeter modules, 2 tracker modules, few ACD tiles)
- □ The beam test is scheduled at CERN for July-September, 2006

CU integration completed may 19 – currently under test in Pisa

A.Chekhtman

Summary

- 16 flight and 3 spare calorimeter modules have been produced.
- Environmental testing and calibration of individual modules done successfully
- □ LAT instrument succesfully assembled at SLAC
- □ Environmental testing of full LAT is under way at NRL
- Beam test of calibration unit at CERN is scheduled for this year.