Calorimeters in the Very Forward Region of ILC

Jinlong Zhang University of Colorado

XII International Conference on Calorimetry in High Energy Physics June 9, 2006

FCAL Collaboration

JINR Dubna

Protvino

Institute of High Energy Physics

National Scientific and Educational Center of Particle and High Energy Physics, Belarus State University

Institute of Physics of the Academy of Sciences of the Czech Republic

DESY Zeuthen

School of Physics and Astronomy, Tel Aviv University

Faculty of Physics and Applied Computer Science, AGH University of Science and Technology

Institute of Nuclear Physics of the Polish Academy of Sciences

Royal Holloway University of London

University of Colorado at Boulder

Jinlong Zhang

LumiCal

Measure the luminosity precisely $\frac{\Delta L}{L}\cong 10^{-4}$ Extend the detector coverage

1

Silicon-tungsten sandwich geometry

	2mrad	20mrad
Absorber thickness (mm)	~3.5	~3.5
Sensor thickness (mm)	~0.5	~0.5
X/Y position (mm)	0/0	+23.70/0
Z _{min} -Z _{max} (mm)	± (2270-2470)	± (2270-2470)
Tilt angle (mrad)	0	10
R _{min} – R _{max} (mm)	60 - 350	100-350
Number of layers	30	30

Jinlong Zhang

Two Designs

strip

30,0°

pad

13.33

280.00

300.00

24 sectors (φ) 15 cylinders (r)

0.5 mm gap between tiles

Jinlong Zhang

Physics Simulation

★ Bhabha scattering
BHWIDE generator
★ Beam spread
0.05%√S
0.5%√S
★ Beamstrahlung
CIRCE generator

Jinlong Zhang

Event Selection

Symmetry cut

Geometric Acceptance

Jinlong Zhang

Resolution

Pad (Basic)

San The State San The	Maximum Peak Shower	The state of the state	
Parameter	Pad	Strip	
Energy resolution	25%√E	25%√E	
θ resolution (rad)	3.5 × 10 ⁻⁵	2.1 ×10⁻⁵	
ϕ resolution (rad)	10-2	10 ⁻³	
$\Delta \Theta$ (rad)	~ 1.4 ×10 ⁻⁶	~2.1×10 ⁻⁷	
Electronics channels	25,200	8000	
	$\frac{\Delta L}{L} < 10^{-4}$		

Background Suppression

Beam Crossing Angle Effect

- ***** Beam diagnostics
- ***** Reduction of backscattering to inner subdetectors
- * Detection of high energy electrons and photons

Two photon background $\mu^+ \mu^-$ + missing energy $\sigma \sim 10^6$ fb

SUSY physics $\mu^+ \mu^-$ + missing energy $\sigma \sim 10^2$ fb

Jinlong Zhang

Sensor: diamond Absorber: tungsten

	Head-on	2mrad	20mrad
Absorber thickness (mm)	3.5	3.5	3.5
Sensor thickness (mm)	0.3	0.3	0.3
X/Y position (mm)	0/0	0/0	+36.5/0
Z position (mm)	±3650	± 3650	± 3650
Tilt angle (mrad)	0	0	10
R _{min} – R _{max} (mm)	15 – 100	20 – 100	20 – 165
$\theta_{in} - \theta_{out}$ (mrad)	4– 28	5 – 28	5-45
Number of layers	30	30	30

Jinlong Zhang

Segmentation

Energy Flux [GeV/mm²

Mean

[GeV/mm²

Energy Flux

Mean

	4 mm	5 mm	8 mm	10 mm
Ring	20	16	10	8
Cell	1660	1072	430	264
Channel	49800	32160	12900	7920

Hoodrow

Optimization for electron identification

Jinlong Zhang

CALOR 2006

Head or

Electron Identification

- Use 10 bunches to define $\langle E_{bg} \rangle$ and RMS_{Ebg} for each pad; Subtract $\langle E_{bg} \rangle$ from E_{dep} for each pad for a signal event; Keep pads with remaining E_{dep} larger than $5 \cdot RMS_{Ebg}$; \star
- \star
- \star
- Build clusters: *
 - more than 7 pads in the segment and
 - more than 4 pads in at least one neighbor segment.

20mrad crossing angle & DID

Detector mounted on the outgoing beam
Blind area for the incoming beam
Simplified implementation (or B map) of DID

CALOR 2006

Background

2 mrad

GeV

10²

10

CALOR 2006

x [cm]

Head on

20 mrad old DID

Jinlong Zhang

Problem & Possible Solution

20 mrad new DID

CALOR 2006

Segmentation with less channels

	Head-on	2mrad	20mrad
Rings	10	10	18
∆R (mm)	8.5	8.0	8.06
N _{seg} in 1 st ring	16	16	16
∆N _{seg} per ring	8	8	8
N _{seg} per layer	520	520	1512
Blind area	0	0	±15°

Jinlong Zhang

Diamond sensor

Diamond samples (CVD)

- FAP (Freiburg)
- ♦ GPI (Moscow)
- Element6 (De Beers)

IV behavior CCD performance MIP signal Irradiation

 \star Some sensors show microcracks (and leakage) \star CCDs are between 0 and 150 μm \star Some sensors are not stable under irradiation

Element 6

... ...

CALOR 2006

Summary

* LumiCal

- Detetor design and performance study with detailed simulation
- Background suppression
- Systematics from geometric distorsion effects
- * Mechaincs and alignment
- × Sensor and Readout system
- > Achievable $\Delta L/L \approx 10^{-4}$

* BeamCal

- Detector Design and performance study with different level simulations
- × Beam diagnostics to provide many beam parameters
- Different instrumentations
- Sensor testing
- × Electronics design
- ✓ Good progresses by FCAL collaboration. Further optimization is needed. 14 mrad crossing angle ?

Jinlong Zhang

